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Abstract

The feasibility of using radically inexpensive micro-electromechanical system (MEMS)

technology for navigation of a nanosatellite is investigated with a focus on attitude esti-

mation. Typically, larger satellites are equipped with star cameras, sun sensors, or Earth

horizon sensors for attitude estimation. These sensors can provide very accurate attitude

measurements. A nanosatellite is highly size, power, and cost constrained and cannot

readily accommodate these sensors. Our mission is to design, build, and operate a radi-

cally inexpensive nanosatellite system. While there is no consensus on what constitutes

a "radically inexpensive" satellite, our goal is a maximum cost of $10,000 per unit. This

precludes the possibility of using costly high-precision attitude sensors. Instead, we em-

ploy a MEMS inertial measurement unit (IMU) and magnetometer coupled with global

positioning system (GPS) to provide derived attitude measurements given an onboard

and up-to-date version of the World Magnetic Model (WMM). This method of deriving

attitude measurements will produce relatively inaccurate measurements. Since our sen-

sors, particularly the derived attitude measurements and the IMU, are corrupted with

systematic errors and random noise, a multiplicative extended Kalman filter (MEKF) is

employed. We augment the state vector with stochastic models of the systematic errors

to obtain real-time estimates of the errors as well as the spacecraft state vector. The MEKF

design process can be divided into two main areas; modeling and estimation. The satellite

system dynamics are modeled using well-known governing equations of motion that rep-

resent the position, velocity, and attitude of the satellite to obtain a priori state estimates

prior to the measurement update. The position, velocity, and attitude are components of

the state vector, which in our case we can measure directly. The IMU is used to propagate
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the spacecraft position, velocity, and attitude between measurements. Since the IMU is

corrupted with systematic errors, such as bias, misalignment, and scale factor errors, the a

priori estimates obtained during propagation will be degraded. Models of these errors are

included in the augmented state to improve the overall accuracy of the navigation sys-

tem. Since the MEKF is known to be an ad hoc algorithm, careful consideration must be

taken to ensure that the state estimation error covariance represents reality. This requires

very careful filter tuning. A single run simulation provides a glimpse of how well the

MEKF is estimating the state vector, however, this is only for a single run and may not be

representative of the actual estimation error. Therefore, we perform a Monte Carlo analy-

sis where hundreds of runs are completed and analyzed. This provides insight into how

the MEKF will respond in as many different scenarios as possible. What we specifically

analyze is if the average sample variance of our Monte Carlo runs closely matches the

state estimation error covariance of a single-run simulation. If so, this indicates that the

filter state estimation error covariance represents reality and that we can trust the results.

Another analysis tool that we employ is the error budget. The error budget allows us to

determine which of the error sources contribute the most to the overall uncertainty of our

state estimates. The error budget is then used to generate a sensitivity analysis. While

the error budget may illuminate the errors contributing the most to the overall uncer-

tainty, the sensitivity analysis points out which of the error sources are most impactful if

they are larger than expected. The benefit of these two analysis tools is that we may find

that some error sources do not have significant contributions to the overall uncertainty

and can be removed from the filter to simplify the structure. After our error budget and

sensitivity analysis, we determined that six of these error sources fit this category and

can be removed from the filter. These include the IMU scaling, non-orthogonality, and

misalignment errors for the gyroscope and accelerometer. Removing them and creating

a sub-optimal filter allows faster computation while still achieving very similar results

to that of the optimal filter. The final MEKF design provided estimates of the attitude
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with an accuracy below 5◦. This is acceptable for our mission which is a sun pointing

attitude within ± 20◦. The main source of error for the attitude estimate was the attitude

measurement bias which was found to be unobservable. Since the magnetometer is the

primary source of data for this derived measurement, bias in the attitude measurement

comes from bias in the magnetometer readings. Magnetometer biases are due to hard

and soft iron errors, which can be calibrated and minimized beforehand, thus reducing

the uncertainty in our attitude bias, but not completely eliminating it. Position measure-

ment bias was also unobservable, however, our mission is sun pointing, therefore precise

positioning is not required. We were still able to achieve an uncertainty of ± 1 m when

the bias uncertainty itself was ± 1 m and the sensor uncertainty was ± 3 m. The veloc-

ity measurement bias was observable, therefore we were able to achieve an uncertainty

of under ± 0.05 m/s which is more than a 50% increase in accuracy from the 0.1 m/s

accuracy provided by the sensor. The most sensitive error groups were found to be the

biases of the position and attitude measurements and the least sensitive groups are the

IMU systematic errors.
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Chapter 1: Introduction

1.1 Cubesats

Cubesats are a class of nanosatellites that have been widely adopted by many universi-

ties and organizations for communications missions. The cubesat standard was invented

by California Polytechnic State University and Stanford University and is recognized as

"the origin of the new space revolution" [1]. Their cost of production and availability of

parts and resources has made the cubesat a viable alternative to larger satellites as tech-

nological advancements continue to lead to a decrease in the size of components required

for a successful operational satellite, such as solar panels, attitude sensors, power sources,

communication boards, etc. The average cost of a nanosatellite is substantially lower than

that of a regular satellite. For example, USSOCOM’s Prometheus satellite (a 1.5U cubesat)

has an estimated reproduction cost of $25,000 [2]. When compared to that of a weather

satellite which costs millions of dollars, we discover a substantial difference and one of

the many benefits of the cubesat program, along with the relative ease of fabrication and

deployment.

Cubesats are classified by their size and can vary from 10 x 10 x 2.5 cm to 10 x 10 x 30

cm. A “U” is used to describe the height of a cubesat as all cubesats have a 10 x 10 cm

cross sectional area [3]. Each “U” corresponds to 10 cm in height. Figure 1.1 depicts this

form factor. Most satellite missions including cubesat missions can be accessed via the

Earth Observation Portal [4].
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Figure 1.1: 1U Cubesats (Courtesy of NASA).

1.2 Study Motivation

The motivation and methodologies are discussed in detail before conducting the in-

vestigation of our smallsat navigation system.

1.2.1 Mission

Our motivation stems from the challenge to design, build, and operate very small

(0.5U) and radically inexpensive smallsats that can perform ground and inter-satellite

communication, as well as active attitude determination and control. While there is no

consensus on what defines a "radically inexpensive" satellite, we aim for a cost of $10,000

per unit. Since 1U smallsats have a mass limit of 1.33 kg [5], we imposed a limit of 1 kg

on our units (there is no standard for 0.5U smallsats yet). Given these size, mass, and

cost constraints, attitude determination and control becomes a challenge. While attitude
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control can be achieved with tri-axial magnetometers (although not full 3-dimensional

control), attitude determination is much more challenging.

Typical sensors used for providing attitude measurements or information for attitude

determination are star cameras, sun sensors, and Earth horizon sensors. However, these

sensors do not fit within our size, mass, or cost constraints. A star camera designed for

cubesats is capable of providing attitude measurements well below 0.1◦ with an average

cost of $30,000 [6, 7]. An Earth horizon sensor designed for cubesats can provide sub 0.2◦

accuracy for attitude measurements with an average cost of $15,000 [8]. A sun sensor

designed for cubesats can provide sub 0.5◦ accuracy at an average cost of $3,000 [9, 10].

The objective for our attitude determination and control system (ADCS) is to maintain a

sun-pointing attitude. Therefore, the high accuracy associated with these sensors is not

needed. Our acceptable window of sun-pointing attitude is ± 20◦. We aim to drive our

attitude accuracy within these bounds to ensure that we can point with confidence to the

sun.

1.2.2 Attitude Determination

In order to provide the satellite with an attitude measurement with our cost, size,

and power constraints, we consider the available on-board resources. We assume the

nanosatellite is equipped with a GPS capable of position and velocity measurements, an

IMU coupled with a magnetometer on the same integrated chip, and a Raspberry Pi (or

similar processor) with an up-to-date version of the World Magnetic Model (WMM) [11].

The question we then address is "How can we create a derived attitude measurement from

our limited resources?". While attitude is not directly measured from any of our available

resources, we can use a combination of our resources to create a derived attitude measure-

ment. Given a magnetometer, we can measure Earth’s magnetic field in the satellite body

reference frame. Then, using the GPS, we can provide a position estimate to the WMM to

obtain an estimate of Earth’s magnetic field in an inertial reference frame. This provides
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one vector pair described in two different reference frames. However, two vector pairs

are required for attitude determination using the well-known TRIAD algorithm [12, 13].

Since we are in low earth orbit, we will take advantage of the fact that the smallsat will

be traveling at an average speed of 7.8 km/s which leads to a measurable change in the

magnetic field acting on the vehicle as time progresses. This rate of change can be com-

puted through a finite difference approximation between two consecutive measurements

in time. We now have two vector pairs (magnetic field and rate of change of magnetic

field due to velocity) and can compute a derived attitude measurement using the TRIAD

algorithm.

1.2.3 Dual-Purpose IMU

The IMU not only serves to support the TRIAD algorithm in producing a derived

attitude measurement, but in propagating the position, velocity, and attitude between

measurements. To propagate the position and velocity in a Kalman filter, the sum of

all accelerations acting on the smallsat must be modeled or otherwise measured. These

accelerations are gravity, drag, solar radiation pressure, etc. However, since we have an

IMU capable of measuring non-gravitational acceleration, we do not need to model non-

gravitational accelerations. We will still need a model in the Kalman filter for gravity, but

a simple spherical planet model suffices for our application. To propagate the attitude

in a Kalman filter, the angular rate of change must be modeled or otherwise measured.

The IMU can also measure angular velocity. Therefore, we have a method of directly

measuring the rate of change of our velocity and attitude without having to incorporate

complex, mathematical models (other than gravity).

One issue with using the IMU to provide the Kalman filter the non-gravitational ac-

celeration and angular velocity is that the IMU output is corrupted with systematic and

random errors. In addition to random noise and bias, the IMU also possesses scaling,

misalignment, and non-orthogonality errors. If these errors are not modeled and incor-
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porated into our Kalman filter, our state estimation error covariance estimate may not be

accurate. Using the IMU to propagate the position, velocity, and attitude will cause the

estimates to drift over time, therefore, it is prudent to model the IMU systematic errors

to provide the Kalman filter with information on how they affect our state dynamics and

measurements.

1.3 Thesis Motivation

Guidance, navigation, and control (GN&C) is generally known as a challenging field.

Our objective is not only to answer the question of feasibility of using a MEMS IMU for

smallsat navigation, but to provide a systematic and concise derivation of this navigation

system for future researchers to further advance state of the art navigation systems.

1.4 Other Applications

The navigation problem explored in this work is common not only among small satel-

lites, but many types of aircraft and spacecraft. Similar solutions used for small satellites

can be applied to larger vehicles as well. Once the solution to the navigation problem is

understood, it can be used as a starting point on other vehicles.

1.5 Mathematical Notations

• Scalar values are denoted by lowercase italic letters: t, q, etc.

• Vectors are denoted by lowercase bold letters: a, v, etc.

• Unit vectors are denoted by lowercase bold letters with arrow overheads:~a,~v, etc.

• Quaternions are denoted by lowercase bold letters with overbars: q̄.

• Matrices are denoted by uppercase bold letters: T, M, etc.
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1.5.1 Vector Descriptions

There are two vector descriptions used in this thesis that utilize a superscript and a

subscript. The superscript will most commonly represent the reference frame in which the

vector is being described. For example, the acceleration a measured in the body reference

frame b is denoted by ab. The second piece of information will be used to describe specific

information about the vector, such as the type of data it represents or the relative position

with respect to a point. In this thesis, the subscripts will have two meanings:

1. A vector that represents the value of a quantity relative to another.

• For example, if a vector p represents the position of a sensor s measured from

or relative to an origin point r of a reference frame f , the vector description

is p f
s/r and is read as “The position of the sensor s with respect to the point r

described in the reference frame f ”. The forward slash denotes “with respect

to” and is the key piece of information for this specific superscript description.

2. A vector that represents a specific type of data

• For example, if a vector a represents the non-gravitational acceleration of a

sensor s in a reference frame f , the vector description is a f
s,ng and is read as “The

non-gravitational acceleration of the sensor s described in the reference frame

f ”. The comma denotes a specific data type and is the key piece of information

for this specific superscript description.

1.5.2 Transformation Descriptions

A transformation matrix transforms a vector from one reference frame to another

through matrix-vector multiplication. This process is also referred to as “vector map-

ping”. In the Chapter 2, transformation matrices will be discussed in detail. Transfor-

mation and rotation matrices will be denoted by T and R, respectively, with a subscript

6



www.manaraa.com

denoting the original reference frame and a super script denoting the transformed refer-

ence frame. For example, Tb
i denotes a transformation from an inertial reference frame i to

a body reference frame b. Rotation matrices rotate vectors into different reference frames

instead of transforming them, but are in the same form and have the same descriptions.

For example, Rb
i rotates a vector about the axis and angle that describes the difference in

orientation between the inertial reference frame i and the body reference frame b while

still describing the vector in the original reference frame i. This is useful for visualizing

reference frames with respect to another since they are made up of a triad of vectors. If

the body reference frame is at an orientation that is rotated 30◦ from the original reference

frame i about the x-axis, then the rotation matrix will rotate any vector 30◦ about that

same axis.

1.6 Axis Representation

All figures utilize colors according to the axis. The x-axis is denoted by a red color, the

y-axis is denoted by a green color, and the z-axis is denoted by a blue color, as illustrated

in Figure 1.2.

Figure 1.2: Axis Color Assignment
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1.7 Reference Frames

Throughout this thesis many reference frames are used. These reference frames are all

right-handed Cartesian coordinate reference frames and are depicted in Figures 1.3 - 1.5.

1.7.1 Earth-Centered, Earth-Fixed Frame (ECEF)

The ECEF reference frame (Figure 1.3) is fixed at the center of mass of the Earth and

rotates. The ECEF reference frame coordinate axes are defined as

• The z f -axis is coincident with true north.

• The x f -axis is orthogonal to the z f -axis and coincides with the prime meridian, 0◦

longitude and 0◦ latitude.

• The y f -axis is orthogonal to the x f and z f axes and completes the right-handed

Cartesian coordinate system.

Figure 1.3: ECEF Reference Frame

Note that the ECEF reference frame does not rotate about z f due to polar motion, also

known as wobble. However, there is a known time-varying transformation for ECEF to

ECI.
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1.7.2 Earth-Centered Inertial Frame (ECI) - J2000

The J2000 ECI reference frame (Figure 1.4) is an an inertial reference frame centered at

the Earth’s center of mass. The J2000 ECI reference frame is aligned as

• The zi-axis is initially coincident with Earth’s spin axis oriented upwards with the

northern hemisphere at the epoch January 1st, 2000 12:00 terrestrial time.

• The xi-axis is orthogonal to the zi-axis and lies along the line of intersection between

the ecliptic plane and the equatorial plane pointing towards the sun at the J2000

epoch.

• The yi-axis is orthogonal to the xi and zi axes and completes the standard right

handed Cartesian coordinate system.

Figure 1.4: ECI Reference Frame

The ecliptic plane is the plane containing the motion describing Earth’s orbit around the

sun. The equatorial plane is the plane defined by Earth’s equator. These planes are illus-

trated in Figure 1.4.

9
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1.7.3 North-East-Down Frame (NED)

The NED reference frame is a tangential stationary reference frame that varies with

latitude and longitude. It is local and fixed with respect to the coordinates. The NED

reference frame is aligned as

• The zned-axis is normal to the Earth’s surface at the given coordinates and points

downwards.

• The xned-axis is orthogonal to the zned-axis and points north from the given local

coordinates.

• The yned-axis is orthogonal to the xned and zned axes, points east from the given local

coordinates, and completes the right handed Cartesian coordinate system

1.7.4 Spacecraft Body Frame

The spacecraft body reference frame is fixed with the spacecraft with its origin coinci-

dent with the center of mass. The spacecraft body reference frame is defined as

• The zb-axis is normal to the top face of the satellite and points up

• The xb-axis is orthogonal to the zb-axis and is normal to one of the side faces.

• The yb-axis is orthogonal to the xb and zb axes and completes the right handed Carte-

sian coordinate system

Note that this coordinate system is chosen by the design engineer and is somewhat arbi-

trary in terms of how the axes are defined.

1.7.5 IMU Case Frame

The IMU case reference frame is defined by the positioning of the IMU with respect

to the spacecraft center of mass. This reference frame is designated by the spacecraft

10
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Figure 1.5: Body Reference Frame

design engineer and for the purposes of this thesis will be assumed to be aligned with the

spacecraft body reference frame. However, the derivations in the following chapters will

still include the case reference frame when transforming between reference frames.

1.7.6 TRIAD Frame

The TRIAD reference frame is a frame in which attitude measurements are repre-

sented. While the magnetometer used for the attitude computations is built into the IMU,

it is a separate device and has its own reference frame. This reference frame is defined in

the IMU data sheet.

1.7.7 Reference Frame Symbol Designations

All of the reference frames will be used to describe vectors and transformations using

subscripts and superscripts. Their designations are listed in Table 1.1.

11
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Table 1.1: Reference Frame Symbol Designations

Symbol Reference Frame
i Earth-Centered-Inertial
f Earth-Centered, Earth-Fixed

ned North-East-Down
b Spacecraft Body
c IMU Case
tr TRIAD

1.8 Thesis Organization

Chapter 2 presents the mathematical fundamentals. Chapter 3 presents the Kalman

filter fundamentals, the backbone of this navigation system. Chapter 4 derives the gov-

erning equations of motion of the satellite. These mathematical models are important

and will be used later in the extended Kalman filter design. Chapter 5 derives the IMU

models for state propagation and sensor models for state measurements. Chapter 6 em-

ploys the specific equations derived in previous chapters into the general format used in

a Kalman filter for our specific application. Chapter 7 presents the results of the filter sim-

ulations and proposes a sub-optimal Kalman filter to improve computational efficiency

when computational power is limited.

12
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Chapter 2: Mathematical Fundamentals

The mathematical principles required in the subsequent derivations are presented.

2.1 Vectors

Vectors can be both 3-dimensional and 4-dimensional (in the case of a quaternion).

Given a right-handed Cartesian coordinate system, each element of the vector describes

the magnitude of that element in its respective axis. Vectors are denoted by

v =


vx

vy

vz

 ∈ R3 ,

where vx represents the magnitude in the x-direction, vx represents the magnitude in the

y-direction, and vx represents the magnitude in the z-direction, in a given reference frame.

The vector Euclidean norm is defined as

||v|| =
√

v2
x + v2

y + v2
z .

This returns a scalar value that represents the overall magnitude (or length) of a vector.

Dividing a vector by its norm yields a unit vector. This process is called normalizing (or

unitizing). A unit vector is given by

~v =
v
||v|| .

13
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For a satellite orbiting Earth, the state vector is the aggregate of multiple vectors de-

scribing position, velocity, attitude, and sensor errors. In the case of velocity, the velocity

vector represents the direction of speed that an object is traveling with respect to a given

reference frame and the norm represents the magnitude of that speed (directional veloc-

ity). For acceleration, it represents the direction that an object is accelerating with respect

to a given reference frame and the norm represents the magnitude of that acceleration

(directional acceleration). Vectors can also be used to represent orientation.

2.1.1 Vector Transpose

Given the column vector v ∈ Rnx1, the transpose is the row vector vT ∈ R1xn. For

example, if

v =


vx

vy

vz

 ∈ R3x1 ,

then, it follows that

vT =

[
vx vy vz

]
∈ R1x3 .

Note that we typically denote v ∈ R3x1 as v ∈ R3.

2.1.2 Vector Dot/Inner Product

Consider v1 ∈ R3 and v2 ∈ R3 given by

v1 =


v1,x

v1,y

v1,z

 and v2 =


v2,x

v2,y

v2,z

 . (2.1)

14
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The dot (or inner product) of these two vectors yields a scalar. The dot product is defined

as

v1 · v2 = vT
1 v2 = v1,xv2,x + v1,yv2,y + v1,zv2,z .

2.1.3 Vector Cross Product

Consider the two vectors in Eq. 2.1. The cross product yields another vector that is

orthogonal to both vectors. The cross product is defined as

v1 × v2 =


v1,yv2,z − v1,zv2,y

v1,zv2,x − v1,xv2,z

v1,xv,2y − v1,yv2,x

 . (2.2)

2.2 Matrices

A matrix is an arrangement of numbers in rows and columns. The size of a matrix is

defined as Mnxm where n represents the number of rows and m represents the number

of columns. The element of a matrix M is represented as Mi,j where i indicates the row

index and j indicates the column index. For example,

M5x3 =



M1,1 M1,2 M1,3

M2,1 M2,2 M2,3

M3,1 M3,2 M3,3

M4,1 M4,2 M4,3

M5,1 M5,2 M5,3


, and M3x5 =


M1,1 M1,2 M1,3 M1,4 M1,5

M2,1 M2,2 M2,3 M2,4 M2,5

M3,1 M3,2 M3,3 M3,4 M3,5

 .

A matrix M ∈ Rnxm is called a square matrix if n = m. Matrices can be multiplied only if

their inner dimensions match. For example, if we have M1 ∈ Rmxn and M2 ∈ Rnxm, then

M = M1M2 ∈ Rmxm .
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Also, matrix multiplication is not commutative. In general,

M1M2 6= M2M1 .

2.2.1 Matrix Inverse and Transpose

For a square matrix M, the inverse of M is denoted by M−1 and is a matrix such that

M−1M = MM−1 = I ,

where I is the identity matrix. However, not all matrices have an inverse. A matrix with

an inverse is said to be nonsingular, which implies that its determinant is not equal to

zero. If the determinant is equal to zero then the inverse does not exist and the matrix is

said to be singular. The transpose of a matrix M is a matrix resulting from switching the

row and column indices. For example, if we have

M =



M1,1 M1,2 M1,3

M2,1 M2,2 M2,3

M3,1 M3,2 M3,3

M4,1 M4,2 M4,3

M5,1 M5,2 M5,3


∈ R5x3 ,

then, it follows that

MT =


M1,1 M2,1 M3,1 M4,1 M5,1

M1,2 M2,2 M3,2 M4,2 M5,2

M1,3 M2,3 M3,3 M4,3 M5,3

 ∈ R3x5 .
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2.3 Matrix Representation of Attitude/Orientation

One of the primary uses of matrices for navigation systems is to represent different

frames of reference relative to each other and to rotate vectors within a given reference

frame. Since navigation information is provided in a variety of reference frames, we must

define all reference frames and the relationship between them, and this is done with trans-

formation matrices. We can describe the orientation of a vector using either the rotation

matrix or an attitude quaternion (a 4-dimensional unit vector). Rotation and transfor-

mation matrices are orthonormal matrices with R−1 = RT. Rotation and transformation

matrices are similar in many ways, but are, in fact, different. The definitions for rota-

tion and transformation matrices are now described, as well as their relationship with the

attitude quaternion and applications to navigation.

2.3.1 Rotation Matrix

Consider a vector v1 ∈ R3 in a given reference frame and the rotation matrix R ∈ R3x3.

Then the product v2 = Rv1 ∈ R3 is a vector rotated from its original position v1 described

in the same reference frame. This is referred to as vector rotation. During this process,

the matrix R is rotating the vector v1. The matrix R is called a rotation matrix. Figure 2.1

depicts a vector v1 rotated by a rotation matrix that rotates the vector 30◦ about the z-axis

of the reference frame.

2.3.2 Transformation Matrix

Vector rotation was described in Section 2.3.1 with an origin frame and a vector be-

ing rotated from one direction to another, giving it new coordinates in the same origin

frame. A transformation matrix, denoted by Tb
a, transforms a vector from frame a to

frame b. This is essential in navigation system design because many reference frames

are used, such as the inertial reference frame, the Earth-centered, Earth-fixed reference
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(a) Vector Before Rotation (b) Vector After Rotation

Figure 2.1: Rotating a Vector with a Rotation Matrix

frame, the body reference frame, and various sensor reference frames. For example, non-

gravitational acceleration is measured by the IMU in the body reference frame, however,

gravitational acceleration is naturally represented in the Earth-centered, Earth-fixed ref-

erence frame. A transformation matrix that maps from the body reference frame to the

ECEF reference frame is required in many instances. Figure 2.2 depicts this with a simple

z-axis transformation matrix. The vector in Figure 2.2 has two possible descriptions: v f

Figure 2.2: Frame Description Top View

and vb. Suppose the vector was described in the body reference frame b and it is desired

to know the vector coordinates in the ECEF reference frame f . To represent it in ECEF

18
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reference frame coordinates, a body to fixed transformation T f
b is employed with

v f = T f
b vb .

2.3.3 Rotation Matrix Construction

Each axis has its own rotation matrix definition given by

Rx =


1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 , Ry =


cos β 0 sin β

0 1 0

− sin β 0 cos β

 , Rz =


cos α − sin α 0

sin α cos α 0

0 0 1

 .

(2.3)

The angle γ is the angle of rotation about the x-axis, β is the angle of rotation about the y-

axis and α is the angle of rotation about the z-axis. These matrices not only signify vector

rotation, but also represent the orientation of an object with respect to a fixed frame of

reference. Observing each column of the rotation matrix from left to right, it can be seen

that all columns are orthogonal unit vectors, more specifically, they are the x, y, and z

axes, respectively, of the body reference frame or orientation triad. For example, a rotation

matrix that describes a 45◦rotation about the z-axis is

Rz(45) =


0.707 −0.707 0

0.707 0.707 0

0 0 1

 .

The identity matrix defines a zero-rotation orientation,

I =


1 0 0

0 1 0

0 0 1

 .
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In Figure 2.3, each column of both the identity matrix and Rz(45) are plotted, where the

first column is red, the second is green and the third is blue. This depicts a rotation

between two reference frames. The inertial reference frame is plotted with solid lines

using the identity matrix and the body reference frame is plotted with dashed lines using

the rotation matrix, signifying an objects rotation or orientation with respect to the inertial

reference frame.

Figure 2.3: Plot of Fixed and Body Reference Frames

The individual rotation matrices in Eq. 2.3 are constrained to rotate about only each

of their axes. For representing the orientation of an object in 3-dimensional space with-

out single axis constraints, the Euler rotation sequence can be used. The Euler sequence

illustrates that consecutive rotations of different angles about different axes can be repre-

sented as one equivalent rotation matrix. This is represented by the product of the rotation

matrices. For example, if an object with its body reference frame initially aligned with a

fixed reference frame is rotated by α about its z-axis, then rotated by β about its y-axis,

and then finally rotated by γ about its x-axis, then the rotation matrix that represents the
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equivalent rotation of those three consecutive rotations is

R = Rx(γ)Ry(β)Rz(α) . (2.4)

This is known as the 3-2-1 or z-y-x Euler sequence, which is usually used to describe the

attitude of airplanes since they follow that sequence of rotations during take-off. Note

that the key assumption behind the Euler sequence is that the consecutive rotations are

done about the body reference frame, not the fixed reference frame.

Another way to represent the orientation of an object in 3-dimensional space is by a

single axis and angle of rotation. Euler’s theorem states that any sequence of rotations

can be described by one rotation sequence of θ about a single axis defined in the reference

frame coordinates. Given the equivalent axis and angle of rotation, the rotation matrix

is [14]

R = [I− sin θ[e×] + (1− cos θ)[e×]2]T , (2.5)

where e is the equivalent axis of rotation and θ is the equivalent angle.

The inverse of a rotation matrix always represents the same rotation in the opposite

direction. For example, a rotation from an inertial reference frame i to a body reference

frame b is given by Rb
i . The inverse of that would be a rotation from a body reference

frame b to a inertial reference frame i given by Ri
b.

2.3.4 Transformation Matrix Construction

Like rotation matrices, transformation matrices have similar definitions. Their rela-

tionship is given by

T = RT .
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For single axes, the reference frame transformations are given by

Tx =


1 0 0

0 cos γ sin γ

0 − sin γ cos γ

 , Ty =


cos β 0 − sin β

0 1 0

sin β 0 cos β

 , Tz =


cos α sin α 0

− sin α cos α 0

0 0 1

 ,

(2.6)

where

Tx(γ) = RT
x (γ) , Ty(γ) = RT

y (γ) , and TT
z (γ) = Rz(γ) .

Eq. 2.4 then becomes

T = Tz(α)Ty(β)Tx(γ) .

The single axis/angle transformation is

T = I− sin θ[e×] + (1− cos θ)[e×]2 . (2.7)

which is the transpose of Eq. 2.5.

The inverse or transpose of a transformation matrix always represents the same trans-

formation in the opposite direction. For example, a transformation from an inertial refer-

ence frame i to a body reference frame b is given by Tb
i . The inverse of that would be a

transformation from a body reference frame b to an inertial reference frame i given by Ti
b.

Tb
i Ti

b = (Ti
b)
−1Ti

b = (Ti
b)

TTi
b = I .

2.3.5 Constraints for Rotation and Transformation Matrices

The orthonormal constraints for rotation and transformation matrices are given in

terms of individual columns. Suppose T =
[

x | y | z
]

where x ∈ R3, y ∈ R3, and

z ∈ R3. Then,

||x|| = 1 , ||y|| = 1 , ||z|| = 1 ,
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and

x · y = 0 , x · z = 0 , y · z = 0 .

2.3.6 Transformation and Rotation Matrix Sequence Inverse

Given a sequence of rotation or transformation matrices, the inverse of this sequence

is given by

[Rx(γ)Ry(β)Rz(α)]
−1 = R−1

z (α)R−1
y (β)R−1

x (γ) = Tz(α)Ty(β)Tx(γ) .

2.3.7 Vectors in Matrix Form

For specific applications, vector operations can be represented by matrices. The three

matrices that will be utilized are the vector cross product matrix, the vector purely off-

diagonal matrix, and the vector diagonal matrix. Each matrix has a unique property that

is utilized in the IMU accelerometer and gyroscope model, as well as relating the small

angle quaternion to the transformation matrix.

2.3.7.1 Vector Cross Product Matrix

The vector cross product matrix represents the cross product of two vectors, rather

than using Eq. 2.2. The cross product and vector cross product matrix are related through

v1 × v2 = [v1×]v2 , (2.8)

where

[v1×] =


0 −v1,z v1,y

v1,z 0 −v1,x

−v1,y v1,x 0

 ,
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which achieves the same result as taking the cross product of two vectors. The cross

product matrix is a skew-symmetric matrix, which satisfies

AT = −A ,

and

v1 × v2 = [v1×]v2 = −[v2×]v1 . (2.9)

2.3.7.2 Vector Purely Off-Diagonal Matrix

The vector purely off-diagonal matrix is the absolute value of the vector cross product

matrix where

[v1|×|] =


0 v1,z v1,y

v1,z 0 v1,x

v1,y v1,x 0

 .

The purely off-diagonal matrix is a symmetric matrix that satisfies

AT = A ,

and

[v1|×|]v2 = [v2|×|]v1 . (2.10)

2.3.7.3 Vector Diagonal Matrix

The diagonal matrix is a matrix in which the elements of a vector are placed along the

diagonal of a matrix,

[v1r] =


v1,x 0 0

0 v1,y 0

0 0 v1,z

 .
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The diagonal matrix is a symmetric matrix that satisfies

AT = A ,

and

[v1r]v2 = [v2r]v1 . (2.11)

2.3.8 Unknown Rotation Matrix Calculation

Given v1 ∈ R3 and v2 ∈ R3, there exists an infinite amount of solutions for M ∈ R3x3

given

Mv1 = v2 . (2.12)

Eq. 2.12 is under-determined. We are only given a single pair of vectors to describe the

3-dimensional orientation of one with respect to another. One solution can be found by

computing the angle θ between the vectors and the axis e orthogonal to both vectors.

θ = cos−1 v1 · v2

||v1||||v2||
, (2.13)

and

~e =
v1 × v2

||v1||||v2||
. (2.14)

If we assume that this axis is truly representative of the vector transformation, then Eqs.

2.13 and 2.14 can be substituted into Eqs. 2.5 and 2.7, yielding the rotation and trans-

formation matrices, respectively. However, this is not always valid. An example that

invalidates this assumption is when the two vectors are co-linear, but rotate about their

own axes. It would be impossible to know this with only a single pair of vectors. There-

fore, another pair is required, and for attitude determination two vector pairs are always

required. The TRIAD algorithm is one method of attitude determination that utilizes two

vector pairs and will be employed in Chapter 5 to compute quaternion measurements.
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2.3.9 Derivative of a Rotation and Transformation Matrix

Given a rotation matrix representing the rotation from an inertial reference frame to

a body reference frame Rb
i , the derivative of the rotation matrix with respect to time is

given by

Ṙb
i = [ωb

b/i×]R
b
i , (2.15)

where ωb
b/i is the angular velocity of the body reference frame with respect to the inertial

reference frame, given in the body reference frame.

Given a transformation matrix representing the transformation from an inertial refer-

ence frame to a body reference frame Tb
i , the derivative of the transformation matrix with

respect to time is given by

Ṫb
i = −[ωb

b/i×]T
b
i , (2.16)

where ωb
b/i is the angular velocity of the body reference frame with respect to the inertial

reference frame, given in the body frame.

2.4 Attitude Quaternions

We utilize attitude quaternions to represent the orientation of the spacecraft body ref-

erence frame with respect to the inertial reference frame. The attitude quaternion uses an

equivalent angle and Euler axis to describe the orientation of an object , given by

q̄ =

q

q0

 =



q1

q2

q3

q0


∈ R4 and q =


q1

q2

q3

 ∈ R3 ,

26



www.manaraa.com

which is defined in terms of the equivalent angle and the Euler axis as

q̄ =

e sin( θ
2)

cos( θ
2)

 =



ex sin( θ
2)

ey sin( θ
2)

ez sin( θ
2)

cos( θ
2)


, (2.17)

where θ is the angular displacement between the body reference frame and the inertial

reference frame and e is the unit vector about which the body rotates. The attitude quater-

nion is also constrained by a unit norm

||q̄|| =
√

q2
1 + q2

2 + q2
3 + q2

0 = 1 . (2.18)

Like rotation matrices, a sequence of consecutive quaternion rotations can be represented

by one quaternion rotation, which is the product of all consecutive rotations. However,

the attitude quaternion product has a special definition for two cases of rotation. For a

rotation (described by the quaternion q̄) given in the body reference frame, the product

of two attitude quaternions q̄ and d̄ is given by

q̄⊗ d̄ =

q

q0

⊗
d

d0

 =

qd0 + q0d− q× d

q0d0 − q · d

 . (2.19)

For a rotation (described by the quaternion q̄) given in the inertial reference frame, the

product of two attitude quaternions q̄ and d̄ is given by

q̄⊗ d̄ =

q

q0

⊗
d

d0

 =

qd0 + q0d + q× d

q0d0 − q · d

 . (2.20)
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We use Eq. 2.19 to compute the product of two quaternions in our navigation system

since the angular rate of change and displacement due to the angular rate of change (over

a small time ∆t) of the spacecraft is more naturally represented in the body reference

frame, given that we utilize a gyroscope to measure the body angular rate. The inverse of

the attitude quaternion is defined as

q̄−1 =

−q

q0

 , (2.21)

which (like the inverse of a rotation matrix) represents the same rotation in the opposite

direction. One very important rule when working with attitude quaternions (and rotation

matrices) is that they cannot be added (or subtracted) to create another attitude quater-

nion. Regular quaternions can be added (or subtracted), but all quaternions in this thesis

are attitude quaternions. The order of multiplication for quaternions is similar to that of

rotation and transformation matrices. Given a z-y-x rotation sequence, we may represent

the sequence in matrix format by

R = RxRyRz .

The same z-y-x rotation sequence using quaternions is represented by

q̄ = q̄x ⊗ q̄y ⊗ q̄z .

The inverse of a quaternion sequence is given as

[q̄x ⊗ q̄y ⊗ q̄z]
−1 = [q̄z]

−1 ⊗ [q̄y]
−1 ⊗ [q̄x]

−1 .
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2.4.1 Small Angle Quaternion

For a quaternion that represents a small angle rotation, the small angle quaternion can

be approximated as

δq̄ ≈

1
2 δα

1

 , (2.22)

where δα is the vector of small Euler angles given by

δα =


γ

β

α

 .

The small angle quaternion can also be converted into an equivalent angle and axis form

of rotation rather than an Euler sequence. The equivalent angle is given by

θ =‖δα‖ , (2.23)

and the equivalent axis is given by

e =
δα

‖δα‖ . (2.24)

2.4.2 Quaternion to Transformation Matrix

A quaternion describing a rotation from an inertial reference frame i to a body refer-

ence frame b in the form of a transformation matrix is given by [14]

Tb
i (q̄) = (q2

0 + ||q||2)I− 2q0[q×] + 2[q×]2 . (2.25)
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The rotation matrix of a quaternion is just the transpose of the transformation matrix

above,

Rb
i (q̄) =

[
(q2

0 + ||q||2)I− 2q0[q×] + 2[q×]2
]T

. (2.26)

If Eq. 2.22 is substituted into Eq. 2.25 and approximated to first order, then the trans-

formation matrix that represents the same small angle transformation from the inertial

reference frame i to the body reference frame b is the small angle transformation matrix

δTb
i = I− [δα×] . (2.27)

The inverse of δTb
i = I− [δα×] can be approximated through the matrix inversion lemma

[15] to first order as

(I− [δα×])−1 = I + [δα×] . (2.28)

2.4.3 Rotation Matrix to Quaternion

We can convert from a rotation matrix, denoted by R, to a quaternion by using [14]

q̄ =

q

q0

 =
1
2



R3,2−R2,3√
1+R1,1+R2,2+R3,3

R1,3−R3,1√
1+R1,1+R2,2+R3,3

R2,1−R1,2√
1+R1,1+R2,2+R3,3√

1 + R1,1 + R2,2 + R3,3


. (2.29)

2.4.4 Derivative of a Quaternion

Similar to the derivative of a rotation matrix with respect to time, the derivative of a

quaternion with respect to time is given by

˙̄qb
i =

1
2

ω̄b
b/i ⊗ q̄b

i (2.30)
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where ω̄b
b/i is the angular rate quaternion given by

ω̄b
b/i =

ωb
b/i

0

 . (2.31)

Note that unlike the attitude quaternion, the angular rate quaternion does not have a

magnitude of 1 since it is used to describe the angular rate of a rotating body. This is also

known as a pure quaternion, a representation of a 3 dimensional vector as a quaternion.

2.4.5 Quaternion Vector Transformation

Similar to how frame transformation matrices can transform a vector from one refer-

ence frame to another, the quaternion can be utilized to do the same. Given a vector in the

inertial reference frame vi and the quaternion that represents the orientation of the body

reference frame with respect to the inertial reference frame q̄b
i , the vector can be described

in the body reference frame by

v̄b = q̄b
i ⊗ v̄i ⊗ [q̄b

i ]
−1 , (2.32)

where v̄b and v̄i are the pure vector quaternions defined as

vb

0

 and

vi

0

 .

A similar equation allows the transformation matrix Tb
i (q̄) to be used to achieve the same

result while still using quaternion multiplication,

v̄b =

Tb
i (q̄)v

i

0

 , (2.33)
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which implies that

q̄b
i ⊗ v̄i ⊗ [q̄b

i ]
−1 =

Tb
i (q̄)v

i

0

 .

In fact, for any quaternion q̄ it can be shown that

q̄b
i ⊗ q̄⊗ [q̄b

i ]
−1 =

Tb
i q

q0

 . (2.34)

Eq. 2.34 will be very useful for simplifying the quaternion measurement deviation equa-

tion in Chapter 5.

2.5 Dynamical Systems Theory

This section focuses on linear systems theory as it applies to the Kalman filter.

2.5.1 Linear System Representation

Given a linear dynamical system such as the spring-mass damper system in Figure

2.4, the equation of motion describing the system is

mÿ = −cẏ− ky + u ,

Figure 2.4: Spring-Mass-Damper System

where u is the force input. A more systematic way of representing this system behavior is
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through state-space representation. Re-arranging the equation so that ÿ is isolated on the

left side by dividing by the mass m yields

ÿ = − c
m

ẏ− k
m

y +
u
m

.

Now, let x1 = y and x2 = ẏ, which also results in ẋ1 = x2 = ẏ and ẋ2 = ÿ. The equation

now becomes

ẋ2 = − c
m

x2 −
k
m

x1 +
u
m

.

This equation can now be represented in matrix form as

ẋ1

ẋ2

 =

 0 1

− k
m − c

m


x1

x2

+

 0

1
m

 u ,

where the output is defined as

y =

[
1 0

] x1

x2

 ,

assuming that y is the output being measured or observed in the system. In the case that

ẏ is being measured, then the output is defined as

y =

[
0 1

] x1

x2

 .

This yields the state-space representation of the system. A linear time-invariant dynami-

cal system can be represented by the state-space representation,

ẋ(t) = Ax(t) + Bu(t) , (2.35)

and

y(t) = Cx(t) , (2.36)
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where A ∈ Rnxn represents the system dynamics and stability, B ∈ Rnxm describes the

control input mapping, and C ∈ Rnxm describes the output mapping. Typically, C is

determined by the engineer since the desired state to be measured as an output is deter-

mined by sensor choice. States such as position, velocity, and attitude can be measured as

outputs by sensors. However, there are cases where C is not entirely determined by the

engineer, rather it is influenced by the system itself and the capabilities of sensors. For

example, given a system with the state

x =



x1

x2

x3

x4


,

if it is impossible to measure each state individually but possible to measure an output

that consists of a combination of the states,

y1 = x1 + x3 and y2 = x2 + x4 ,

then the measurement mapping matrix that yields the output y from the state x is a con-

stant matrix

C =

1 0 1 0

0 1 0 1

 .

In this scenario, the measurement mapping matrix was not fully determined by the en-

gineer. A similar case is the output of a biased sensor. Since sensors are often corrupted

with biases, the measurement often consists of the state element plus the corresponding

bias. One way to account for these biases is pre-calibration. In some applicable cases

the bias may be included in the state as part of the system and estimated through the
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Kalman filter. However, biases are not always observable. This will be discussed in the

subsequent chapter in more depth.

For a linear time-invariant system such as the system described above, the continuous-

time solution to ẋ(t) is represented by the state transition matrix Φ(t). In the case of a

discrete system with time step ∆t, this matrix propagates the state from a previous point

in time tk−1 to the current point in time, tk = tk−1 + ∆t . Given a time-invariant system,

the continuous time state transition matrix for a linear time-invariant system is found

using the matrix exponential of the system matrix A,

Φ(t) = eA(t−t0) . (2.37)

The solution to the time-invariant system at any time t ≥ t0 is

x(t) = eA(t−t0)x(t0) .

The state transition matrix is an essential part of the linear Kalman filter structure and is

utilized in the subsequent chapter.

2.5.2 Non-Linear System Representation

For a non-linear system, a linear, time-invariant state-space representation in Eq. 2.35

and 2.36 of dynamics is not often possible. For example, Euler’s equations of rigid body

rotation are

I1ω̇1 + (I3 − I2)ω2ω3 = M1 ,

I2ω̇2 + (I1 − I3)ω3ω1 = M2 ,

I3ω̇3 + (I2 − I1)ω1ω2 = M3 ,
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where ω2ω3, ω3ω1, and ω1ω1 represent non-linear terms. However, the dynamics can

be linearized about an equilibrium point to describe the system behavior in a neighbor-

hood around the equilibrium point. This allows state-space representation to be used

for control and estimation purposes, but only within the small linear range. If we leave

the linear range, we have to re-linearize the system. A non-linear system is linearized

through the Jacobian function, which evaluates the partial derivative of ẋ with respect to

x. The system Jacobian matrix applied to a state vector takes the form,

F =



∂ẋ1
∂x1

∂ẋ1
∂x2

. . . ∂ẋn
∂xn

∂ẋ2
∂x1

∂ẋ1
∂x2

. . . ∂ẋn
∂xn

... ... . . . ...

∂ẋn
∂x1

∂ẋn
∂x2

. . . ∂ẋn
∂xn


x = x∗

, (2.38)

where x∗ represents the equilibrium point. Note that F can also remain time-varying (al-

though linear) and the Kalman filter methodology can accommodate. The same holds for

the input control matrix B and output matrix C. If the output of the system is a non-linear

function of the state itself, then the Jacobian is applied to find the linearized measurement

mapping matrix. The measurement mapping Jacobian matrix in terms of a state vector is

H =



∂y1
∂x1

∂y1
∂x2

. . . ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

. . . ∂y2
∂xn

... ... . . . ...

∂ym
∂x1

∂ym
∂x2

. . . ∂ym
∂xn


x = x∗

. (2.39)
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For Euler’s rigid body rotation with no control input, the state vector and Jacobian is

ẋ =


ω̇1

ω̇2

ω̇3

 =


I2−I3

I1
ω2ω3

I3−I1
I2

ω1ω3

I1−I2
I3

ω1ω2

 and F =


0 I2−I3

I1
ω∗3

I2−I3
I1

ω∗2
I3−I1

I2
ω∗3 0 I3−I1

I2
ω∗1

I1−I2
I3

ω∗2
I1−I2

I3
ω∗1 0


ω = ω∗

.

The matrix is then linearized about an equilibrium point ω = ω∗ of the states where the

state variables are chosen to be constant. For the purposes of simulating a control system,

the equilibrium point can be the most recent estimate of the state. State transition can be

computed numerically. This is repeated in a discrete fashion to provide an approxima-

tion of the solution. These concepts are applied to the extended Kalman filter, since the

dynamics will be non-linear.
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Chapter 3: Navigation Algorithm - The Kalman Filter

The backbone of the navigation algorithm is the Kalman filter. The Kalman filter is

an algorithm that incorporates mathematical models, external measurements, and a priori

state estimates, to compute current state estimates as accurately as possible. The Kalman

filter is capable of estimating states that we cannot directly measure, such as sensor biases.

3.1 The Kalman Filter Structure

The Kalman filter employs two main sources of information: a state estimate and

measurements of combinations of the state. In fact, the Kalman filter optimally weights

external measurements and estimates of the measurements based on the available state

estimate and determines the best state estimate based on measures of their associated un-

certainties. The Kalman filter also relies heavily on mathematical models of the spacecraft

dynamics, measurements, and error sources. For this reason, Kalman filter design process

is as much of an art form as it is a science, because the mathematical models being used

will not perfectly reflect reality. The more accurate and often complex the mathematical

models are, the better the Kalman filter can generally estimate the state.

The Kalman filter algorithm flow is illustrated in Figure 3.1. To begin the process,

initial conditions are chosen for the estimated state vector and the state estimation error

covariance. There are different approaches to selecting the initial values, and most follow

from knowledge of the problem at hand. After the initial conditions at time t0 are cho-

sen, the filter process begins. The state is propagated from the previous time step tk−1

to the current time step tk, which is the prediction of the state using the mathematical
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Figure 3.1: General Kalman Filter Flow

models that describe the system behavior. To propagate the spacecraft state, a solution

(or approximation of the solution) to the differential equations that represent the state

dynamics is required. Since the dynamics can be linear or non-linear, there are differ-

ent ways to propagate the state. Several methods will be discussed. Once the state is

propagated, from tk−1 to tk, the Kalman gain is computed just prior to incorporating the

external measurement. With the measurement and state estimate at tk, an update to the

state estimate and state estimation error covariance matrix is made. We denote the state

estimate at tk just prior to the measurement update as x̂−k and the associated error co-

variance as P−k . After the update, we denote the state estimate and state estimation error

covariance as x̂+k and P+
k , respectively. The update involves taking the difference between

the measurements and the predicted measurement, defined as the measurement residual,

to correct and update the state estimate. Once the state estimated is updated, the state

estimation error covariance is updated as well. This process is then repeated in a loop.

The state estimation error covariance matrix is a measure of accuracy of the state es-

timate. A "large" covariance implies that the Kalman filter is uncertain about the state
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estimate accuracy, where as a "small" state estimation error covariance indicates that the

Kalman filter is more certain that the Kalman filter estimate is accurate. Like the es-

timated state, the state estimation error covariance is propagated and updated once a

measurement is available. Each diagonal element of the state estimation error covariance

matrix represents the uncertainty for the corresponding state element. The square root of

the state estimation error covariance matrix diagonal elements represents the ±1σ of the

associated estimation error.

When designing Kalman filters, the state propagation is typically accomplished at a

much higher frequency than the state update rate. This is because sensors sample at much

lower frequencies than that of the embedded processor internal or external clock source,

as well as the higher sampling rate of IMU. For example, a microprocessor may be able

to propagate the state estimate and state estimation error covariance at a frequency of

100 Hz while the sensor can only output measurements at a frequency of 10 Hz. If no

measurements are available, the Kalman filter will continue to propagate the state vector

and state estimation error covariance forward in time without updating. This is known

as dead reckoning. If the state vector continues to propagate through time without a

measurement update, it will accumulate error and propagate that error through time and

eventually diverge from the true state vector trajectory.

3.2 Kalman Filter - Linear Dynamics

Figure 3.2 illustrates the algorithm for a linear Kalman filter. The state transition ma-

trix, denoted by Φk, is the solution to the differential equations that represent the state

dynamics. The state transition matrix is then used to propagate the state vector and state

estimation error covariance between measurements. Prior to an external measurement

update, the Kalman gain is computed. Once an external measurement is available, the

state vector and state estimation error covariance are update using the Kalman gain. The

general model for the Kalman filter is derived in the subsequent sections.
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Figure 3.2: Linear Kalman Filter Algorithm

3.2.1 Propagating Between Measurements

For a linear Kalman filter the system model is given by

ẋ(t) = Ax(t) + Gw(t) . (3.1)

The discrete form of the system is

xk = Φkxk−1 + Γkwk . (3.2)

Note that G and Γk are process noise mapping matrices, typically constant and time-

invariant. The measurement model is

yk = Cxk + ηk . (3.3)

Here wk and w(t) represent the model uncertainty (process noise). Since we cannot model

our system perfectly, we include process noise as a tuning parameter to achieve acceptable
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state estimation results. The system model in Eq. 3.2 assumes that the process noise wk is

a zero-mean, white noise sequence with

E{wk} = 0 , E{wkwT
j } = Qkδjk .

And for the system in Eq. 3.1 we assume w(t) is a zero-mean, white noise sequence with

E{w(t)} = 0 ∀ t , E{w(t)wT(τ)} = Qδ(t− τ) ∀ t, τ .

The Kronecker delta function δkj and the Dirac delta function δ(t − τ) indicate that the

sequences wk and w(t) are uncorrelated in time, i.e.,

E{wkwT
j } =


Qk , k = j

0 , k 6= j
,

and

E{w(t)wT(τ)} =


Q , t = τ

0 , t 6= τ

.

The measurement model assumes that the measurement noise ηk is a zero-mean, white

noise sequence with covariance Rk. That is,

E{ηk} = 0 , E{ηkηT
j } = Rkδkj ,

or,

E{ηkηT
j } =


Rk , k = j

0 , k 6= j
.
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The relationship between Q and Qkis given by

ΓkQkΓT
k =

∫ tk

tk−1

Φ(tk, τ)GQGTΦT(tk, τ)dτ . (3.4)

Analyzing the first block in Figure 3.2, the state transition matrix Φk propagates the pre-

vious state estimate x̂+k−1 forward in time to the current time step to obtain x̂−k . The state

transition matrix computation for time-invariant systems has the form Φk = eA∆t where

∆t = tk − tk−1. For the time-variant case, the state transition matrix is computed through

numerical integration.

Using the initial conditions x0 and P0, we propagate the state vector and state estima-

tion error covariance forward to the next available measurement. For the initial condi-

tions (x̂0, P0) required to initialize the filter, we have

E{x0} = x̂0 and E{(x0 − x̂0)(x0 − x̂0)
T} = P0 .

For our initial estimate of x̂0, there is an associated uncertainty P0. When initializing

our filter, we must do our best to encapsulate our uncertainty of x̂0 within P0. If we

choose a very large initial uncertainty P0 so that we may never make an estimate with an

error beyond the bounds of P0 then we have safely initialized our filter with the potential

consequence of a larger estimation error or convergence time. Alternatively, if we fail to

encapsulate our initial estimate within the bounds of our initial uncertainty, our filter may

diverge and performance will be degraded. The tuning process, along with knowledge

of the problem at hand, can help determine a good value for initializing the covariance.

Once the state transition matrix, Φk, has been computed, the state vector and state

estimation error covariance are propagated forward to the current time step. The state is

propagated via

x̂−k = Φkx̂+k−1 , (3.5)
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and the state estimation error covariance is propagated via

P−k = ΦkP+
k−1ΦT

k + Qk , (3.6)

where

P−k = E{(xk − x̂−k )(xk − x̂−k )
T} .

An example of the use of process noise is estimating the altitude of an airplane flying

through a patch of unexpected turbulence or the position of a car driving over an unex-

pected bumpy patch on a road. If we model the car or airplane dynamics to describe a

trajectory without regard to disturbances, then the state estimation error covariance will

not include the effects of the external disturbances. Insight into how much model uncer-

tainty is to be expected is essential to the performance of the Kalman filter. Therefore, Qk

can be viewed as a tuning parameter. A large Qk means that there is a large uncertainty

in the model. A Qk of zero means that the system is modeled perfectly. Setting Qk = 0

will lead to the optimal gain Kk → 0 as k→ ∞, which is highly undesirable.

3.2.2 Kalman Gain

The Kalman filter optimally weights the estimated states and the available measure-

ments. The Kalman gain is a function of the propagated covariance P−k , the measurement

mapping matrix C, and the sensor noise covariance matrix Rk. The Kalman gain is given

by

Kk = P−k CT(CP−k CT + Rk)
−1 . (3.7)

3.2.3 Update

Once a measurement is available, the measurement residual is computed. The mea-

surement residual is the difference between the external measurement and the predicted
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external measurement, as

rk = yk − ŷk . (3.8)

The predicted external measurement is computed using the the measurement mapping

matrix C and the predicted state x̂−k , as

ŷk = Cx̂−k . (3.9)

After the residual is computed, the state estimate is updated via

x̂+k = x̂−k + Kkrk , (3.10)

and the state estimation error covariance updates via

P̂+
k = (I−KkC)P̂−k , (3.11)

where

P+
k = E{(xk − x̂+k )(xk − x̂+k )

T} ,

and Kk is given in Eq. 3.7. If measurements are not available, the propagated state es-

timate will over time accumulate error and cause the state estimation error to grow. As

measurements are processed, the estimate is updated and converges towards the true

trajectory. The Kalman filter timeline is illustrated in Figure 3.3.

3.2.4 Example 1 - Linear Kalman Filter

Consider the dynamics of a system, given by

ẋ =

ẋ1

ẋ2

 =

0 1

0 0


x1

x2

 =

x2

0

 . (3.12)
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Figure 3.3: Kalman Filter Algorithm Timeline

Assume we can measure x1 and x2. We have the output

yk = Cxk ,

where

C =

1 0

0 1

 .

Consider that we add process noise to account for uncertainty in the model. Since ẋ1 = x2

is a perfect model of position, we set the process noise for that state element to zero.

Velocity as shown in Eq. 3.12 may not be perfectly known so process noise is added. The

Kalman filter model is then given as

ẋ(t) =

0 1

0 0

 x(t) +

0

1

w(t) , (3.13)

where E{w(t)} = 0 ∀ t and E{w(t)w(τ)} = Qδ(t − τ) ∀ t, τ. Since A is constant, this

system is time-invariant, therefore the state transition matrix is

Φk = eA∆t =

1 ∆t

0 1

 ,
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where ∆t = tk − tk−1. The discrete state solution is

x1,k

x2,k

 =

1 ∆t

0 1


x1,k−1

x2,k−1

 =

x1,k−1 + x2,k−1∆t

x2,k−1

 .

Then, from Eq. 3.2 the discrete Kalman filter system model is

xk =

1 ∆t

0 1

 xk−1 +

0

1

wk ,

where

E{wkwT
k } = Qk = Q

1
3 ∆t3 1

2 ∆t2

1
2 ∆t2 ∆t

 ,

and Q is the PSD of w(t). The Kalman filter measurement model is

yk =

1 0

0 1

 xk + ηk ,

where

E{ηk} = 0 ∀ t , and E{ηkηT
j } = Rkδk,j ∀ k, j .

The state is propagated at 50Hz and the measurements are sampled at 5Hz. The simula-

tion time is 100 seconds.

To gain insight into the Kalman filter performance, the state estimation error covari-

ance and state error are plotted and observed along with the state estimate. The input

parameters for this example are

Rk =

9 0

0 0.01

 , and Q = 0.00001 ,
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with the initial conditions,

P0 =

12 0

0 0.02

 , and x0 =

−2.2482

0.9082

 ,

and ∆t = 0.02 s. The simulated results are shown in Figures 3.4 and 3.5, which illustrate a

comparison between the measured, true, and estimated state, as well as the state estima-

tion error and error covariance. Through the state estimation error covariance plots it is

shown that both states are observable, as indicated by the reduction in the state estimation

error covariance between t0 and t.

Figure 3.4: Example 1 - x1
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Figure 3.5: Example 1 - x2

3.2.5 Example 2 - Linear Kalman Filter with Bias

Returning to Example 1, we now look at the scenario where the sensors are not only

corrupted with random noise, but also random constant biases. Biases are modeled as

β̇ = 0 ,

with

E{β} = 0 , E{ββT} = Pβ .

If the biases were not constant and did exhibit change over time then they could be mod-

eled as a random walk through the use of process noise. The system model remains the

same with the addition of the biases to the state vector so that they can be estimated and
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accounted for to ensure optimal state estimation. The augmented state is

x =

[
x1 x2 x3 x4

]T
,

where x3 = βx1 and x4 = βx2 . The model is given by

A =



0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,

and the output

yk = Cxk ,

where

C =

1 0 1 0

0 1 0 1

 .

From Eq. 3.1 Kalman filter model is given by

ẋ(t) = Ax(t) + Gw(t) ,

where

G =

[
0 1 0 0

]T
.

The the state transition matrix is

Φk = eA∆t =



1 ∆t 0 0

0 1 0 0

0 0 1 0

0 0 0 1


,
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where ∆t = tk − tk−1. From Eq. 3.2, the discrete Kalman filter system model is given as

xk = Φkxk−1 + wk ,

where

E{wk} = 0 ∀ t , and E{wkwT
j } = Qkδk,j ∀ k, j .

The Kalman filter measurement model is given by

yk = Cxk + ηk ,

where

E{ηk} = 0 ∀ t , and E{ηkηT
j } = Rkδk,j ∀ k, j .

From Eq. 3.4 the process noise matrix is given as

Qk = Q



1
3 ∆t3 1

2 ∆t2 0 0

1
2 ∆t2 ∆t 0 0

0 0 0 0

0 0 0 0


,

where Q is the PSD of w(t).

The input parameters are

Rk =

9 0

0 0.01

 , and Q = 0.00001 ,
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with the initial conditions,

P0 =



16 0 0 0

0 0.05 0 0

0 0 1 0

0 0 0 0.1


, and x0 =



−3.0338

0.8304

−1.4075

0.1337


,

and ∆t = 0.02 s. The simulated results are shown in Figures 3.6 and 3.8 which illustrate

a comparison between the measured, true, and estimated state elements x1 and x2, as

well as the state estimation error and error covariance for all elements. One difference

in this example is that the position bias covariance does not experience any reduction in

uncertainty. Therefore, the position bias is unobservable. Since the bias is unobservable,

the position estimation error covariance exhibits an increase in magnitude.

Figure 3.6: Example 2 - x1
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Figure 3.7: Example 2 - x2

Figure 3.8: Example 2 - Biases
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3.3 Extended Kalman Filter - Non-Linear Dynamics

Figure 3.9: Non-Linear Kalman Filter Procedure

Figure 3.9 illustrates the algorithm for a non-linear Kalman filter, also known as an

extended Kalman filter. Due to the non-linearity of the dynamics, we utilize numerical

methods to approximate solutions to the differential equations. We employed the Runge-

Kutta 4th order (RK4) tool to numerically integrate the state estimate and state estimation

error covariance.

3.3.1 Propagating Between Measurements

For an extended Kalman filter, the system model is

ẋ = f(x(t), t) + w(t) , (3.14)

where w(t) is a zero-mean, white noise process with

E{w(t)} = 0 , and E{w(t)w(τ)T} = Qδ(t− τ) ∀ t, τ .
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The measurement model takes the form

yk = hk(x(tk)) + ηk , (3.15)

where the measurement model assumes that the measurement noise ηk is a zero-mean,

white noise sequence of covariance Rk, and

E{ηk} = 0 , and E{ηkηT
j } = Rkδkj .

For propagation between measurements, a numerical tool, such as the RK4 algorithm,

would suffice for both the estimated state and state estimation error covariance. There-

fore, for the a priori state estimate,

x̂−k = solve
(

f(x̂(t), t)
)

, for tk−1 ≤ t ≤ tk ,

with the initial condition x̂(tk−1) = x̂+k−1. To obtain the a priori state estimation error co-

variance estimate, we use the RK4 algorithm to numerically integrate the state estimation

error covariance differential equation,

P−k = solve
(

F(x̂(t), t)P(t) + P(t)FT(x̂(t), t) + Q
)

, for tk−1 ≤ t ≤ tk , (3.16)

with P(tk−1) = P+
k−1, where the Jacobian matrix F is obtained by linearizing the state

differential equations about the most recent estimate of the state, given by

F(x̂(t), t) =
∂f(x(t), t)

∂x(t)

∣∣∣∣∣
x(t)=x̂(t)

. (3.17)
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3.3.2 Kalman Gain

The Kalman gain equation retains the same form with the exception that it is now

using the Jacobian matrix,

Kk = P−k HT
k (x̂
−
k )
[
Hk(x̂−k )P

−
k HT

k (x̂
−
k ) + Rk

]−1
, (3.18)

where the Jacobian matrix H is obtained by linearizing the measurement equations about

the most recent estimate of the state,

Hk(x̂−k ) =
∂hk(x(tk))

∂x(tk)

∣∣∣∣∣
x(tk)=x̂−k

. (3.19)

3.3.3 Update

The update stage retains the same form for the extended Kalman filter. The measure-

ment residual is

rk = yk − ŷk .

The predicted output, ŷk, is estimated by evaluating the measurement equation with the

most recent state estimate

ŷk = hk(x̂−k ) .

After the residual is computed, the state estimate is then updated via

x̂+k = x̂−k + Kkrk ,

and the state estimation error covariance via

P̂+
k =

[
I−KkHk(x̂−k )

]
P̂−k .
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3.3.4 Example 3 - Extended Kalman Filter

Consider the following second-order non-linear differential equation representing an

object in free fall,

r̈ =
−µ

r2 , (3.20)

where µ is the gravitational constant. If we can measure the position and velocity of this

object directly, our measurement mapping equation is linear and given by

H =

1 0

0 1

 .

The second-order differential equation in Eq. 3.20 can be represented as two first-order

differential equations, as

ẋ =

 ṙ

v̇

 =

 v
−µ
r2

 .

While this is a second-order differential equation, we have decomposed it into two first-

order equations. We then numerically solve each equation separately.

rk = ∆tvk−1 + rk−1 and vk = −∆t
µ

r2
k
+ vk−1 .

The Jacobian of the state differential equations is

F =

 ∂ṙ
∂r

∂ṙ
∂v

∂v̇
∂r

∂v̇
∂v

 =

 0 1
2µ
r3 0

 ,

where the system is re-linearized at each time step about r = r̂−k after propagating the

state.
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The input parameters for the filter shown in the plots are

Rk =

9 0

0 0.01

 , and Q =

0 0

0 0.00001

 ,

with the initial conditions,

P0 =

12 0

0 0.02

 , and x0 =

6378098.053

499.9082156

 .

The state estimation error covariance is depicted in Figure 3.10.

Figure 3.10: Example 3 - Position and Velocity Covariance
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Chapter 4: State Dynamics and Equations of Motion

To estimate the state of our spacecraft, the Kalman filter relies on a mathematical

model, typically represented by differential equations, to represent the vehicle dynamics.

This mathematical model will never be perfect, yet the overall accuracy of the Kalman fil-

ter state estimates will largely depend on this model, hence this model is very important.

However, we have an IMU that can provide us with the rate of change of our velocity

(non-gravitational) and the rate of change of our attitude (angular velocity). The IMU

directly measures non-gravitational acceleration and we can obtain gravitational acceler-

ation from a two-body gravity model given a position estimate. The IMU also directly

measures angular velocity so we can compute the attitude rate of change. Using the IMU,

we can propagate our state forward through time to provide a priori estimates in between

state updates in lieu of mathematical models of the external accelerations in conjunction

with a gravity model.

As we are using the IMU to propagate position, velocity, and attitude, we will estimate

the position, velocity, and attitude of the IMU, not the center of gravity of the body. We

can readily obtain information about the center of gravity state after obtaining estimates

of the IMU state.

4.1 State Dynamics

The three main state components of interest are ri
imu, vi

imu and q̄b
i . These state compo-

nents will also be affected by the systematic errors of the IMU, therefore these errors must

also be accounted for by augmenting our state vector to include them.
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4.1.1 Position

The rate of change of the position of the IMU is

ṙi
imu = vi

imu . (4.1)

4.1.2 Velocity

The rate of change of the velocity of the IMU is

v̇i
imu = ai

imu,g + Ti
b(q̄

i
b)T

b
cac

imu,ng , (4.2)

where ai
g is computed via a mathematical gravity model and ai

imu,ng is provided by the

IMU. Since ai
imu,ng exists in the IMU case reference frame, it must be transformed into the

inertial reference frame. To this end, we transform ac
imu,ng to the spacecraft body reference

frame via Tb
c and from the spacecraft body reference frame to the inertial reference frame

via Ti
b(q̄

i
b). The matrix Tb

c is assumed to be known and constant. We will also make the

assumption that the gravitational acceleration of the IMU and the gravitational acceler-

ation of the spacecraft center of gravity are approximately equivalent due to the small

relative distance between them. Therefore,

ai
imu,g ≈ ai

g .

The velocity differential equation then becomes

v̇i
imu = ai

g + Ti
b(q̄

i
b)T

b
cac

imu,ng . (4.3)
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4.1.3 Attitude

The attitude quaternion rate of change is given by

˙̄qb
i =

1
2

ω̄b
b/i ⊗ q̄b

i , (4.4)

where ω̄b
b/i is the angular rate quaternion

ω̄b
b/i =

ωb
b/i

0

 , (4.5)

and ωb
b/i is the relative angular rate represented in the body reference frame and ⊗ repre-

sents quaternion multiplication.

4.2 State Dynamics Summary

The three main state differential equations are summarized as

ẋ =


ṙi

imu

v̇i
imu

˙̄qb
i

 =


vi

imu

ai
g + Ti

b(q̄
i
b)T

b
cac

imu,ng

1
2 ω̄b

b/i ⊗ q̄b
i

 . (4.6)

4.3 Estimation Error Dynamics

Because of the complex nature of attitude quaternion dynamics and their incompati-

bility with regular mathematical operations, the MEKF algorithm is used. During the up-

date stage of the Kalman filter the measurement residual is used to compute the updated

state. However, this operation is a challenge for attitude quaternions due to their inabil-

ity to be added or subtracted, more specifically, the addition or subtraction of attitude

quaternions does not produce an attitude quaternion. Rather than estimate the quater-
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nion directly, we estimate the quaternion error or deviation from the true quaternion, δα.

This is done so that the vector component of the quaternion, which is compatible with

mathematical operations such as addition and subtraction, can be included in the models

of the other state elements without having to worry about compliance with the attitude

quaternion mathematical constraints. Therefore, the differential equation for the quater-

nion error δα must be derived. Since the attitude error dynamics are being derived, the

same must be done for position and velocity to ensure compatibility. The position and

velocity of the IMU are dependent on the attitude of the spacecraft since the IMU and the

center of gravity are not aligned, therefore they cannot be estimated in a separate filter.

The attitude, however, can be estimated separately.

In order to compute the F matrix of the state estimation error dynamics, the partial

derivative of the error state differential equations must be taken with respect to the error

states. The estimated state differential equations are

˙̂x =


˙̂ri
imu/i

˙̂vi
imu

˙̄̂qb
i

 =


v̂i

imu

âi
g + T̂i

b( ˆ̄qi
b)T

b
c âc

imu,ng

1
2

ˆ̄ωb
b/i ⊗ ˆ̄qb

i

 . (4.7)

The state estimation error dynamics are now derived in the following sections.

4.3.1 Position

The position estimation error is defined as

δri
imu = ri

imu − r̂i
imu .
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Differentiating the position estimation error with respect to time yields the position esti-

mation error differential equation,

δṙi
imu = ṙi

imu − ˙̂ri
imu ,

which is the first component of the estimation error differential equation vector, and when

substituted with Eqs. 4.6 and 4.7 becomes

δṙi
imu = vi

imu − v̂i
imu .

The final form of the position estimation error differential equation is

δṙi
imu = δvi

imu . (4.8)

4.3.2 Velocity

The velocity estimation error is defined as

δvi
imu = vi

imu − v̂i
imu .

Differentiating the velocity estimation error with respect to time yields the velocity esti-

mation error differential equation,

δv̇i
imu = v̇i

imu − ˙̂vi
imu ,

which is the second component of the estimation error dynamics vector, and when sub-
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stituted with Eqs. 4.6 and 4.7 becomes

δv̇i
imu = ai

g + Ti
b(q̄

i
b)T

b
cac

imu,ng − âi
g − T̂i

b( ˆ̄qi
b)T

b
c âc

imu,ng . (4.9)

Eq. 4.9 represents the differential equation for the velocity estimation error. The gravita-

tional acceleration is given by

ai
g = − µ∥∥∥ri

cg

∥∥∥3 ri
cg ,

which is a function of the position of the center of gravity of the spacecraft, which is not

in the state vector, rather than the position of the IMU, which is in the state vector. We

expand the gravitational acceleration in a Taylor series and keeping only the first order

terms yields

ai
g = âi

g +

 ∂ai
g

∂ri
g

∣∣∣∣∣
ri

g=r̂i
g

 δri
cg . (4.10)

Define

G :=

 ∂ai
g

∂ri
g

∣∣∣∣∣
ri

cg=
ˆri
cg

 .

Eq. 4.10 can be written as

ai
g = âi

g + Gδri
cg , (4.11)

where the matrix G is given as

G =



∂ai
g,x

∂ri
cg,x

∂ai
g,x

∂ri
cg,y

∂ai
g,x

∂ri
cg,z

∂ai
g,y

∂ri
cg,x

∂ai
g,y

∂ri
cg,y

∂ai
g,y

∂ri
cg,z

∂ai
g,z

∂ri
cg,x

∂ai
g,z

∂ri
cg,y

∂ai
g,z

∂ri
cg,z


ri

cg=r̂i
cg

, (4.12)
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and the matrix partitions are given as

∂ai
g,x

∂ri
cg,x

= 3µri
cg,x

2[
ri

cg,x
2
+ ri

cg,y
2
+ ri

cg,z
2]− 5

2 − µ
[
ri

cg,x
2
+ ri

cg,y
2
+ ri

cg,z
2]− 3

2

∂ai
g,x

∂ri
cg,y

= 3µri
cg,xri

cg,y

[
ri

cg,x
2
+ ri

cg,y
2
+ ri

cg,z
2]− 5

2

∂ai
g,x

∂ri
cg,z

= 3µri
cg,xri

cg,z

[
ri

cg,x
2
+ ri

cg,y
2
+ ri

cg,z
2]− 5

2

∂ai
g,y

∂ri
cg,x

= 3µri
cg,yri

cg,x

[
ri

cg,x
2
+ ri

cg,y
2
+ ri

cg,z
2]− 5

2

∂ai
g,y

∂ri
cg,y

= 3µri
cg,y

2[
ri

cg,x
2
+ ri

cg,y
2
+ ri

cg,z
2]− 5

2 − µ
[
ri

cg,x
2
+ ri

cg,y
2
+ ri

cg,z
2]− 3

2

∂ai
g,y

∂ri
cg,z

= 3µri
cg,yri

cg,z

[
ri

cg,x
2
+ ri

cg,y
2
+ ri

cg,z
2]− 5

2

∂ai
g,z

∂ri
cg,x

= 3µri
cg,zri

cg,x

[
ri

cg,x
2
+ ri

cg,y
2
+ ri

cg,z
2]− 5

2

∂ai
g,z

∂ri
cg,y

= 3µri
cg,zri

cg,y

[
ri

cg,x
2
+ ri

cg,y
2
+ ri

cg,z
2]− 5

2

∂ai
g,z

∂ri
cg,z

= 3µri
cg,z

2[
ri

cg,x
2
+ ri

cg,y
2
+ ri

cg,z
2]− 5

2 − µ
[
ri

cg,x
2
+ ri

cg,y
2
+ ri

cg,z
2]− 3

2 .

We have now introduced δri
cg. This quantity is not in the state vector, therefore it must be

written in terms of known or estimated state variables. From Figure 4.1, ri
cg and ri

imu are

related through

ri
cg = ri

imu + ri
cg/imu .

However, rcg/imu is known in the body reference frame, therefore,

ri
cg = ri

imu + Ti
b(q̄

i
b)r

b
cg/imu ,
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Figure 4.1: Center of Gravity and the IMU in the Inertial Reference Frame

and the estimated position of the center of gravity given by

r̂i
cg = r̂i

imu + T̂i
b( ˆ̄qi

b)r
b
cg/imu .

The center of gravity is assumed to be constant and not shift with respect to the IMU. For

purposes of our smallsat (with no propulsion system), rb
cg/imu is known and constant. The

estimation error for the position of the center of gravity then becomes

δri
cg = ri

imu + Ti
b(q̄

i
b)r

b
cg/imu − r̂i

imu − T̂i
b( ˆ̄qi

b)r
b
cg/imu

= δri
imu + [Ti

b(q̄
i
b)− T̂i

b( ˆ̄qi
b)]r

b
cg/imu . (4.13)

Recall from Eq. 2.27 that a small angle transformation matrix δTb
i can be expressed in

terms of δα as

δTb
i = I− [δα×] .
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The small angle transformation δTb
i represents the small angle deviation between the true

and estimated orientation,

δTb
i = Tb

i (q̄
b
i )[T̂

b
i ( ˆ̄qb

i )]
−1 .

Then, we have

Tb
i (q̄

b
i )[T̂

b
i ( ˆ̄qb

i )]
−1 = I− [δα×] ,

from which it follows that

Tb
i (q̄

b
i ) = T̂b

i ( ˆ̄qb
i )− [δα×]T̂b

i ( ˆ̄qb
i ) . (4.14)

and

Ti
b(q̄

i
b) = T̂i

b( ˆ̄qi
b) + T̂i

b( ˆ̄qi
b)[δα×] . (4.15)

Substituting Eq. 4.15 into Eq. 4.13 yields

δri
cg = δri

imu + T̂i
b( ˆ̄qi

b)[δα×]rb
cg/imu . (4.16)

Substituting Eq. 4.16 into Eq. 4.11 yields

ai
g = âi

g + G
[
δri

imu + T̂i
b( ˆ̄qi

b)[δα×]rb
cg/imu

]
. (4.17)

Eq. 4.17 can then be substituted into Eq. 4.9, yielding

δv̇i
imu = G

[
δri

imu + T̂i
b( ˆ̄qi

b)[δα×]rb
cg/imu

]
+ Ti

b(q̄
i
b)T

b
cac

imu,ng − T̂i
b( ˆ̄qi

b)T
b
c âc

imu,ng . (4.18)

Substituting Ti
b(q̄

i
b) from Eq. 4.15 in Eq. 4.18 yields

δv̇i
imu = G

[
δri

imu + T̂i
b( ˆ̄qi

b)[δα×]rb
cg/imu

]
+ T̂i

b( ˆ̄qi
b)T

b
cac

imu,ng + T̂i
b( ˆ̄qi

b)[δα×]Tb
cac

imu,ng − T̂i
b( ˆ̄qi

b)T
b
c âc

imu,ng . (4.19)
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Substituting the non-gravitational acceleration error,

δac
imu,ng = ac

imu,ng − âc
imu,ng ,

into Eq. 4.19 yields

δv̇i
imu = G

[
δri

imu + T̂i
b( ˆ̄qi

b)[δα×]rb
cg/imu

]
+ T̂i

b( ˆ̄qi
b)T

b
cδac

imu,ng + T̂i
b( ˆ̄qi

b)[δα×]Tb
c âc

imu,ng + T̂i
b( ˆ̄qi

b)[δα×]Tb
cδac

imu,ng . (4.20)

Neglecting second-order and higher-order terms, Eq. 4.20 reduces to

δv̇i
imu = G

[
δri

imu + T̂i
b( ˆ̄qi

b)[δα×]rb
cg/imu

]
+ T̂i

b( ˆ̄qi
b)T

b
cδac

imu,ng + T̂i
b( ˆ̄qi

b)[δα×]Tb
c âc

imu,ng .

(4.21)

Equation 4.21 represents the velocity estimation error differential equation. In order to

compute the Jacobian of the dynamics, the estimated states must be isolated. It can be

seen that δα is not isolated, rather, it is inside the cross product matrix. In order to bring it

out and isolate it so that the Jacobian can be computed, the property of Eq. 2.9 is utilized

to yield the final form of the velocity estimation error differential equation,

δv̇i
imu = G

[
δri

imu − T̂i
b( ˆ̄qi

b)[r
b
cg/imu×]δα

]
+ T̂i

b( ˆ̄qi
b)T

b
cδac

imu,ng − T̂i
b( ˆ̄qi

b)T
b
c [â

c
imu,ng×]δα .

(4.22)

We consider δac
imu,ng and âc

imu,ng more closely in Chapter 5 when the IMU accelerometer

model is derived.

4.3.3 Attitude

The quaternion estimation error is defined as

δq̄b
i = q̄b

i ⊗ [ ˆ̄qb
i ]
−1 .
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Differentiating the quaternion estimation error with respect to time yields the quaternion

estimation error differential equation,

δ ˙̄qb
i = ˙̄qb

i ⊗ [ ˆ̄qb
i ]
−1 + q̄b

i ⊗ [ ˙̄̂qb
i ]
−1 .

Substituting in the third row from Eqs. 4.6 and 4.7 yields

δ ˙̄qb
i = [

1
2

ω̄b
b/i ⊗ q̄b

i ]⊗ [ ˆ̄qb
i ]
−1 + q̄b

i ⊗ [
1
2

ˆ̄ωb
b/i ⊗ ˆ̄qb

i ]
−1

=
1
2

ω̄b
b/i ⊗ q̄b

i ⊗ [ ˆ̄qb
i ]
−1 + q̄b

i ⊗ [ ˆ̄qb
i ]
−1 ⊗ 1

2
[ ˆ̄ωb

b/i]
−1

=
1
2

ω̄b
b/i ⊗ δq̄b

i + δq̄b
i ⊗

1
2
[ ˆ̄ωb

b/i]
−1

=
1
2

ωb
b/i

0

⊗ δq̄b
i + δq̄b

i ⊗
1
2

−ω̂b
b/i

0

 . (4.23)

Expanding Eq. 4.23 using the quaternion multiplication definition from Eq. 2.19 yields

δ ˙̄qb
i =

1
2 ωb

b/iδq0
b
i −

1
2 ωb

b/i × δqb
i −

1
2 ω̂b

b/iδq0
b
i + δqb

i ×
1
2 ω̂b

b/i

1
2 ω̂b

b/i · δqb
i −

1
2 ωb

b/i · δqb
i

 . (4.24)

Using Eq. 2.8 to group cross product terms into matrices yields

δ ˙̄qb
i =

1
2 ωb

b/iδq0
b
i −

1
2 [ω

b
b/i×]δqb

i −
1
2 ω̂b

b/iδq0
b
i + [δqb

i×]
1
2 ω̂b

b/i

1
2 ω̂b

b/i · δqb
i −

1
2 ωb

b/i · δqb
i

 . (4.25)

Recalling Eq. 2.9, Eq. 4.25 reduces to

δ ˙̄qb
i =

1
2 ωb

b/iδq0
b
i −

1
2 [ω

b
b/i×]δqb

i −
1
2 ω̂b

b/iδq0
b
i −

1
2 [ω̂

b
b/i×]δqb

i

1
2 ω̂b

b/i · δqb
i −

1
2 ωb

b/i · δqb
i

 . (4.26)
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Applying the definition of the angular velocity estimation error δωi
b/i = ωi

b/i − ω̂i
b/i to

Eq. 4.26 yields

δ ˙̄qb
i =

1
2 δωb

b/iδq0
b
i −

1
2 [ω

b
b/i×]δqb

i −
1
2 [ω̂

b
b/i×]δqb

i

−1
2 δωb

b/i · δqb
i

 . (4.27)

Now applying the definition of the angular velocity estimation error re-arranged for the

true angular velocity, ωi
b/i = δωi

b/i + ω̂i
b/i, to Eq. 4.27 yields

δ ˙̄qb
i =

1
2 δωb

b/iδq0
b
i −

1
2 [δωb

b/i×]δqb
i −

1
2 [ω̂

b
b/i×]δqb

i −
1
2 [ω̂

b
b/i×]δqb

i

−1
2 δωb

b/i · δqb
i


=

1
2 δωb

b/iδq0
b
i −

1
2 [δωb

b/i×]δqb
i − [ω̂b

b/i×]δqb
i

−1
2 δωb

b/i · δqb
i

 . (4.28)

Eq. 4.28 can then be reduced in complexity based on the following assumptions:

• A small angle assumption implies that δq0
b
i → 1 since the scalar part of any small

angle quaternion is near 1.

• Under first order assumptions, all second and higher order terms may be neglected,

i.e., δωb
b/i × δqb

i → 0 and −δωb
b/i · δq0

b
i → 0.

Applying these simplifications yields the final form of the quaternion estimation error

differential equation,

δ ˙̄qb
i =

1
2 δωb

b/i − [ω̂b
b/i×]δqb

i

0

 . (4.29)

However, since the angle deviation (the vector component of the small angle quaternion)

is the quantity being estimated, one more expansion is needed. Recalling the small angle
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quaternion approximation from Eq. 2.22

δq̄b
i ≈

1
2 δα

1

 ,

it can be seen from Eq. 4.29 that the rate of change with respect to time of the small angle

quaternion is

δ ˙̄qb
i ≈

1
2 δα̇

0

 . (4.30)

Applying the approximation in Eq. 4.30 to Eq. 4.29 yields

1
2 δα̇

0

 =

1
2 δωb

b/i − [ω̂b
b/i×]

1
2 δα

0

 ,

where the final form of the angle deviation estimation error differential equation is

δα̇ = δωb
b/i − [ω̂b

b/i×]δα . (4.31)

We consider δωb
b/i and ω̂b

b/i more closely in Chapter 5 when the model for the gyroscope

is derived.
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Chapter 5: IMU and Sensor Models

Models for both the onboard sensors and IMU are presented. These models will in-

clude the IMU systematic and random errors, as well as sensor noise and bias.

5.1 IMU - Accelerometer

The IMU measures the non-gravitational acceleration of the spacecraft. We model the

measurement as being corrupted with random noise, bias, axes non-orthogonality, axes

misalignment, and scale factor errors. The measured non-gravitational acceleration is

represented in terms of these errors as

ac
imu,ng,m = (I + Ma + Na)(I + Sa)(ac

imu,ng + βa + ηa) , (5.1)

where βa is the accelerometer bias, ηa is the accelerometer noise, Ma is the accelerome-

ter axes misalignment error matrix, Na is the accelerometer axes non-orthogonality error

matrix, and Sa is the accelerometer scale factor uncertainty matrix. The systematic error

matrices are

Ma =


0 ma,z −ma,y

−ma,z 0 ma,x

ma,y −ma,x 0

 = −[ma×] with ma =


ma,x

ma,y

ma,z

 ,
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Na =


0 na,z na,y

na,z 0 na,x

na,y na,x 0

 = [na| × |] with na =


na,x

na,y

na,z

 ,

and Sa =


sa,x 0 0

0 sa,y 0

0 0 sa,z

 = [sar] with sa =


sa,x

sa,y

sa,z

 .

We expand

(I + Ma + Na)(I + Sa) = I + Ma + Na + Sa + MaSa + NaSa . (5.2)

Since Ma, Na, and Sa are considered to be small error terms, MaSa and NaSa can be ne-

glected under first order assumptions. Here, it follows that

(I + Ma + Na)(I + Sa) ≈ I + Ma + Na + Sa .

Define

∆a := Ma + Na + Sa .

We can re-write Eq. 5.2 as

(I + Ma + Na)(I + Sa) ≈ I + ∆a ,

and Eq. 5.1 reduces to

ac
imu,ng,m = (I + ∆a)(ac

imu,ng + βa + ηa) . (5.3)
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Solving for ac
imu,ng yields

ac
imu,ng = (I + ∆a)

−1ac
imu,ng,m − βa − ηa

= (I− ∆a)ac
imu,ng,m − βa − ηa

= (I−Ma −Na − Sa)ac
imu,ng,m − βa − ηa

= ac
imu,ng,m −Maac

imu,ng,m −Naac
imu,ng,m − Saac

imu,ng,m − βa − ηa

= ac
imu,ng,m + [ma×]ac

imu,ng,m − [na|×|]ac
imu,ng,m − [sar]ac

imu,ng,m − βa − ηa , (5.4)

where we utilize the fact that ∆a represents small angle errors and

(I + ∆a)
−1 ≈ I− ∆a .

Utilizing the definitions in Eqs. 2.9, 2.10, and 2.11 allows us to re-write the final form the

true non-gravitational acceleration as

ac
imu,ng = ac

imu,ng,m − [ac
imu,ng,m×]ma − [ac

imu,ng,m|×|]na − [ac
imu,ng,mr]sa − βa − ηa . (5.5)

The estimated non-gravitational acceleration is

âc
imu,ng = ac

imu,ng,m − [ac
imu,ng,m×]m̂a − [ac

imu,ng,m|×|]n̂a − [ac
imu,ng,mr]ŝa − β̂a . (5.6)

The non-gravitational acceleration estimation error, δac
imu,ng = ac

imu,ng − âc
imu,ng , is

δac
imu,ng = −[ac

imu,ng,m×]δma − [ac
imu,ng,m|×|]δna − [ac

imu,ng,mr]δsa − δβa − ηa . (5.7)

5.2 IMU - Gyroscope

The same procedure is followed for the angular velocity since the gyroscope is cor-

rupted with similar random and systematic errors as the accelerometer. We model the
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measured angular rate as

ωc
b/i,m = (I + Mg + Ng)(I + Sg)(ω

c
b/i + βg + ηg) , (5.8)

where βg is the gyroscope bias, ηg is the gyroscope noise, Mg is the gyroscope axes mis-

alignment error matrix, Ng is the gyroscope axes non-orthogonality error matrix, and Sg

is the gyroscope scale factor uncertainty matrix. The systematic error matrices are

Mg =


0 mg,z −mg,y

−mg,z 0 mg,x

mg,y −mg,x 0

 = −[mg×] with mg =


mg,x

mg,y

mg,z

 ,

Ng =


0 ng,z ng,y

ng,z 0 ng,x

ng,y ng,x 0

 = [ng| × |] with ng =


ng,x

ng,y

ng,z

 ,

and Sg =


sg,x 0 0

0 sg,y 0

0 0 sg,z

 = [sgr] with sg =


sg,x

sg,y

sg,z

 .

As before, we expand

(I + Mg + Ng)(I + Sg) = I + Mg + Ng + Sg + MgSg + NgSg .

Since Mg, Ng, and Sg are considered to be small error terms, MgSg and NgSg can be

neglected under first order assumptions. Here, it follows that

(I + Mg + Ng)(I + Sg) ≈ I + Mg + Ng + Sg . (5.9)
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Define

∆g := Mg + Ng + Sg .

Then, we can write Eq. 5.9 as

(I + Mg + Ng)(I + Sg) ≈ I + ∆g ,

and Eq. 5.8 reduces to

ωc
b/i,m = (I + ∆g)(ω

c
b/i + βa + ηg) . (5.10)

Solving for ωc
b/i yields

ωc
b/i = (I + ∆g)

−1ωc
b/i,m − βg − ηg

= (I− ∆g)ω
c
b/i,m − βg − ηg

= (I−Mg −Ng − Sg)ω
c
b/i,m − βg − ηg

= ωc
b/i,m −Mgωc

b/i,m −Ngωc
b/i,m − Sgωc

b/i,m − βg − ηg

= ωc
b/i,m + [mg×]ωc

b/i,m − [ng|×|]ωc
b/i,m − [sgr]ωc

b/i,m − βg − ηg ,

where we utilize the fact that ∆g represents small angle errors and

(I + ∆g)
−1 ≈ I− ∆g .

Utilizing the definitions in Eqs. 2.9, 2.10, and 2.11 allows us to write the final form the

true angular velocity as

ωc
b/i = ωc

b/i,m − [ωc
b/i,m×]mg − [ωc

b/i,m|×|]ng − [ωc
b/i,mr]sg − βg − ηg . (5.11)
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The estimated angular velocity is

ω̂c
b/i = ωc

b/i,m − [ωc
b/i,m×]m̂g − [ωc

b/i,m|×|]n̂g − [ωc
b/i,mr]ŝg − β̂g . (5.12)

The angular velocity estimation error, δωc
b/i = ωc

c/i − ω̂c
b/i , is

δωc
b/i = −[ω

c
b/i,m×]δmg − [ωc

b/i,m|×|]δng − [ωc
b/i,mr]δsg − δβg − ηg . (5.13)

5.3 GPS Position

In this section, the sensor model for the GPS position measurement is presented. The

GPS reports position in the ECEF reference frame. The state to measurement mapping

equation yields the GPS position measurement in terms of state variables, therefore a

model for how the GPS position is related to the IMU position is needed. This model

includes the error terms that are associated with the GPS measurement. In the case of the

GPS, the error terms are a fixed random bias and random noise. Figure 5.1 illustrates the

relationship between the IMU and GPS positions.

Figure 5.1: IMU and GPS in the ECEF Reference Frame
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The position of the GPS with respect to the IMU in the fixed reference frame is given

by

r f
gps = r f

imu + r f
gps/imu .

Since the position measurement is corrupted with a fixed random bias and random noise,

the equation that represents the GPS position measurement in terms of the IMU position

and GPS error terms is

r f
gps = [r f

imu + r f
gps/imu] + β

f
pos + η

f
pos .

The vector rgps/imu is more naturally represented in the body reference frame, not in the

ECEF reference frame. Using the body to fixed transformation,

r f
gps = [r f

imu + T f
b rb

gps/imu] + β
f
pos + η

f
pos .

In terms of the inertial to body reference frame transformation, the body to fixed reference

frame transformation is

T f
b = T f

i (t)T
i
b(q̄

i
b) , (5.14)

where T f
i (t) is a known function of time. Therefore,

r f
gps = [r f

imu + T f
i (t)T

i
b(q̄

i
b)r

b
gps/imu] .

The position rimu is estimated in the inertial reference frame, not the ECEF reference

frame. Using the inertial to fixed reference frame transformation, the true GPS position

measurement is

r f
gps = [T f

i (t)r
i
imu + T f

i (t)T
i
b(q̄

i
b)r

b
gps/imu] + β

f
pos + η

f
pos .
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The estimated GPS position measurement is

r̂ f
gps = [T f

i (t)r̂
i
imu + T f

i (t)T̂
i
b( ˆ̄qi

b)r
b
gps/imu] + β̂

f
pos .

With the estimation error of the GPS position measurement defined as δr f
gps = r f

gps − r̂ f
gps,

we have

δr f
gps = T f

i (t)r
i
imu − T f

i (t)r̂
i
imu + T f

i (t)T
i
b(q̄

i
b)r

b
gps/imu − T f

i (t)T̂
i
b( ˆ̄qi

b)r
b
gps/imu (5.15)

+ β
f
pos − β̂

f
pos + η

f
pos

= T f
i (t)δri

imu + T f
i (t)[T

i
b(q̄

i
b)r

b
gps/imu − T̂i

b( ˆ̄qi
b)r

b
gps/imu] + δβ

f
pos + η

f
pos

= T f
i (t)δri

imu + T f
i (t)[T

i
b(q̄

i
b)− T̂i

b( ˆ̄qi
b)]r

b
gps/imu + δβ

f
pos + η

f
pos . (5.16)

From Eq. 4.15, the true body to inertial reference frame transformation in terms of esti-

mated quantities is estimated as

Ti
b(q̄

i
b) = T̂i

b( ˆ̄qi
b) + T̂i

b( ˆ̄qi
b)[δα×] , (5.17)

and substituting Eq. 5.17 into Eq. 5.15 yields

δr f
gps = T f

i (t)δri
imu + T f

i (t)
[
T̂i

b( ˆ̄qi
b) + T̂i

b( ˆ̄qi
b)[δα×]− T̂i

b( ˆ̄qi
b)
]
rb

gps/imu + δβ
f
gps + η

f
gps

= T f
i (t)δri

imu + T f
i (t)T̂

i
b( ˆ̄qi

b)[δα×]rb
gps/imu + δβ

f
pos + η

f
pos . (5.18)

which, using the definition in Eq. 2.9 to bring out δα from the cross product operator, can

be written in final form as

δr f
gps = T f

i (t)δri
imu − T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]δα + δβ

f
pos + η

f
pos . (5.19)
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5.4 GPS Velocity

In this section, the sensor model for the velocity measurement is presented. The GPS

reports velocity in the ECEF reference frame. The state to measurement mapping equa-

tion yields the velocity measurement in terms of state variables, therefore a model for

how the velocity measurement is related to the IMU velocity is needed. This model in-

cludes the error terms that are associated with the velocity measurement. In the case of

the GPS, the error terms are a fixed random bias and random noise. Figure 5.1 illustrates

the relationship between the IMU and GPS positions.

As illustrated in Figure 5.1, the position of the GPS with respect to the IMU in the

inertial reference frame is given by

r f
gps = r f

imu + r f
gps/imu . (5.20)

Taking the derivative of Eq. 5.20 yields the velocity, given by

v f
gps = v f

imu + ω
f
b/i × r f

gps/imu .

The velocity measurement is modeled as being corrupted with a fixed random bias and

random noise terms, hence we have the model

v f
gps = [v f

imu + ω
f
b/i × r f

gps/imu] + β
f
vel + η

f
vel .

The vector rgps/imu is more naturally represented in the body reference frame, not in the

ECEF reference frame. Using the body to ECEF transformation matrix, the sensor model

translates to

v f
gps =

[
v f

imu + T f
b [ω

b
b/i × rb

gps/imu]
]
+ β

f
vel + η

f
vel .
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Using Eq. 5.14, we have

v f
gps =

[
v f

imu + T f
i (t)T

i
b(q̄

i
b)[ω

b
b/i × rb

gps/imu]
]
+ β

f
vel + η

f
vel

= v f
imu + T f

i (t)T
i
b(q̄

i
b)[ω

b
b/i×]r

b
gps/imu + β

f
vel + η

f
vel .

The vector vimu is estimated in the inertial reference frame, not the ECEF reference frame.

Using the inertial to fixed reference frame transformation, we have

v f
gps = T f

i (t)v
i
imu + T f

i (t)T
i
b(q̄

i
b)[ω

b
b/i×]r

b
gps/imu + β

f
vel + η

f
vel ,

and using the definition from Eq. 2.9, the final form of the measurement model is given

as

v f
gps = T f

i (t)v
i
imu − T f

i (t)T
i
b(q̄

i
b)[r

b
gps/imu×]ω

b
b/i + β

f
vel + η

f
vel . (5.21)

The estimated velocity measurement is

v̂ f
gps = T f

i (t)v̂
i
imu − T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]ω̂

b
b/i + β̂

f
vel .

With the estimation error of the velocity measurement defined as δv f
gps = v f

gps − v̂ f
gps, we

have

δv f
gps = T f

i (t)v
i
imu − T f

i (t)v̂
i
imu − T f

i (t)T
i
b(q̄

i
b)[r

b
gps/imu×]ω

b
b/i

+ T f
i (t)T̂

i
b( ˆ̄qi

b)[r
b
gps/imu×]ω̂

b
b/i + β

f
vel − β̂

f
vel + η

f
vel

= T f
i (t)δvi

imu − T f
i (t)T

i
b(q̄

i
b)[r

b
gps/imu×]ω

b
b/i

+ T f
i (t)T̂

i
b( ˆ̄qi

b)[r
b
gps/imu×]ω̂

b
b/i + δβ

f
vel + η

f
vel , (5.22)
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and using the body to inertial reference frame transformation expansion from Eq. 5.17 in

Eq. 5.22 we have

δv f
gps = T f

i (t)δvi
imu − T f

i (t)
[
T̂i

b( ˆ̄qi
b) + T̂i

b( ˆ̄qi
b)[δα×]

]
[rb

gps/imu×]ω
b
b/i

+ T f
i (t)T̂

i
b( ˆ̄qi

b)[r
b
gps/imu×]ω̂

b
b/i + δβ

f
vel + η

f
vel

= T f
i (t)δvi

imu − T f
i (t)T̂

i
b( ˆ̄qi

b)[r
b
gps/imu×]ω

b
b/i − T f

i (t)T̂
i
b( ˆ̄qi

b)[δα×][rb
gps/imu×]ω

b
b/i

+ T f
i (t)T̂

i
b( ˆ̄qi

b)[r
b
gps/imu×]ω̂

b
b/i + δβ

f
vel + η

f
vel

= T f
i (t)δvi

imu − T f
i (t)T̂

i
b( ˆ̄qi

b)[r
b
gps/imu×]δωb

b/i

− T f
i (t)T̂

i
b( ˆ̄qi

b)[δα×][rb
gps/imu×]ω

b
b/i + δβ

f
vel + η

f
vel . (5.23)

With the angular velocity estimation error defined as δωb
b/i = ωb

b/i − ω̂b
b/i, we can rewrite

Eq. 5.23 as

δv f
gps = T f

i (t)δvi
imu − T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]δωb

b/i

− T f
i (t)T̂

i
b( ˆ̄qi

b)[δα×][rb
gps/imu×]

[
δωb

b/i + ω̂b
b/i

]
+ δβ

f
vel + η

f
vel

= T f
i (t)δvi

imu − T f
i (t)T̂

i
b( ˆ̄qi

b)[r
b
gps/imu×]δωb

b/i − T f
i (t)T̂

i
b( ˆ̄qi

b)[δα×][rb
gps/imu×]δωb

b/i

− T f
i (t)T̂

i
b( ˆ̄qi

b)[δα×][rb
gps/imu×]ω̂

b
b/i + δβ

f
vel + η

f
vel . (5.24)

Neglecting second-order terms in Eq. 5.24, the velocity measurement deviation is given

as

δv f
gps = T f

i (t)δvi
imu − T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]δωb

b/i

− T f
i (t)T̂

i
b( ˆ̄qi

b)[δα×][rb
gps/imu×]ω̂

b
b/i + δβ

f
vel + η

f
vel ,
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and using the definition in Eq. 2.9 and Eq. 5.13 we obtain

δv f
gps = T f

i (t)δvi
imu + T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×][ω

b
b/i,m×]δmg

+ T f
i (t)T̂

i
b( ˆ̄qi

b)[r
b
gps/imu×][ω

b
b/i,m|×|]δng + T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×][ω

b
b/i,mr]δsg

+ T f
i (t)T̂

i
b( ˆ̄qi

b)[r
b
gps/imu×]δβg + T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]ηg

+ T f
i (t)T̂

i
b( ˆ̄qi

b)

[[
rb

gps/imu × ω̂b
b/i

]
×
]

δα + δβ
f
vel + η

f
vel . (5.25)

5.5 Quaternion Sensor

In this section, the sensor model for the attitude quaternion measurement presented.

We assume that the MEMS IMU includes a magnetometer that measures Earth’s mag-

netic field as a vector in the magnetometer reference frame (not necessarily coincident

with the IMU case reference frame). Given two specific vector pairs, we can compute a

transformation matrix estimate using the TRIAD algorithm, which can then be converted

to a quaternion representation. For now, it is assumed that a quaternion measurement is

available for purposes of deriving the measurement deviation equation.

Since the attitude quaternion measurement is obtained from the TRIAD algorithm,

the measurement will be represented in the magnetometer reference frame which will be

referred to as the TRIAD reference frame, tr. The TRIAD algorithm uses magnetometer

data as an input, hence the TRIAD reference frame is coincident with the magnetometer

reference frame. The quaternion obtained from the TRIAD algorithm is

q̄tr
i = q̄tr

b ⊗ q̄b
i ,

where q̄tr
b is assumed known. The measured quaternion is assumed to be corrupted with

a fixed random bias and random noise. We incorporate the bias and noise through quater-
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nion multiplication. The error quaternion is defined as

q̄tr
β,η =

 θe
‖θe‖ sin ‖θe‖

2

cos ‖θe‖
2

 , (5.26)

where

θe = βtr
q + ηtr

q .

The TRIAD quaternion sensor model is then given by

q̄tr
i,m = q̄tr

β,η ⊗ q̄tr
b ⊗ q̄b

i .

The estimated quaternion measurement is

ˆ̄qtr
i = ˆ̄qtr

β,η ⊗ q̄tr
b ⊗ ˆ̄qb

i , (5.27)

where

ˆ̄qtr
β,η =

 θ̂e
‖θ̂e‖ sin‖θ̂e‖

2

cos‖θ̂e‖
2

 ,

and

θ̂e = β̂tr
q .

With the measurement deviation defined as δq̄tr
i = q̄tr

i,m ⊗ [ ˆ̄qtr
i ]
−1 yields

δq̄tr
i = q̄tr

β,η ⊗ q̄tr
b ⊗ q̄b

i ⊗ [ ˆ̄qtr
β,η ⊗ q̄tr

b ⊗ ˆ̄qb
i ]
−1

= q̄tr
β,η ⊗ q̄tr

b ⊗ q̄b
i ⊗ [ ˆ̄qb

i ]
−1 ⊗ [q̄tr

b ]
−1 ⊗ [ ˆ̄qtr

β,η]
−1 . (5.28)

With δq̄b
i = q̄b

i ⊗ [ ˆ̄qb
i ]
−1, Eq. 5.28 reduces to

δq̄tr
i = q̄tr

β,η ⊗ q̄tr
b ⊗ δq̄b

i ⊗ [q̄tr
b ]
−1 ⊗ [ ˆ̄qtr

β,η]
−1 . (5.29)
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Recalling Eq. 2.34, we can write

q̄tr
b ⊗ δq̄b

i ⊗ [q̄tr
b ]
−1 =

Ttr
b δqb

i

δq0
b
i

 , (5.30)

where Ttr
b is the body to TRIAD reference frame transformation. Substituting Eq. 5.30

into Eq. 5.29 yields

δq̄tr
i = q̄tr

β,η ⊗

Ttr
b δqb

i

δq0
b
i

⊗ [ ˆ̄qtr
β,η]
−1 . (5.31)

With the definition of the quaternion deviation q̄tr
β,η yields

δq̄tr
β,η = q̄tr

β,η ⊗ [ ˆ̄qtr
β,η]
−1 .

we find that

q̄tr
β,η = δq̄tr

β,η ⊗ q̄tr
β,η ,

which, when substituted into Eq. 5.31 yields

δq̄tr
i = δq̄tr

β,η ⊗ ˆ̄qtr
β,η ⊗

Ttr
b δqb

i

δq0
b
i

⊗ [ ˆ̄qtr
β,η]
−1 . (5.32)

Once again, recalling Eq. 2.34, we can write

ˆ̄qtr
β,η ⊗

Ttr
b δqb

i

δq0
b
i

⊗ [ ˆ̄qtr
β,η]
−1 =

T̂β,ηTtr
b δqb

i

q0
b
i

 ,

and it follows that Eq. 5.32 simplifies to

δq̄tr
i = δq̄tr

β,η ⊗

T̂β,ηTtr
b δqb

i

δq0
b
i

 . (5.33)
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Expanding Eq. 5.33 using the quaternion product yields

δq̄tr
i =

δqtr
β,ηδq0

b
i + δq0

tr
β,ηT̂β,ηTtr

b δqb
i − δqtr

β,η × T̂β,ηTtr
b δqb

i

δq0
tr
β,ηδq0

b
i − δqtr

β,η · T̂β,ηTtr
b δqb

i

 . (5.34)

Neglecting higher order terms, and under the small angle quaternion assumption, the

quaternion measurement deviation in Eq. 5.34 becomes

δq̄tr
i =

δqtr
β,η + T̂β,ηTtr

b δqb
i

1

 . (5.35)

The error quaternion defined in Eq. 5.26 quantifies the bias and noise in terms of a quater-

nion. If this quaternion is assumed to be a small angle quaternion, then

q̄tr
β,η ≈

1
2 θe

1

 and ˆ̄qtr
β,η ≈

1
2 θ̂e

1

 ,

therefore,

δq̄tr
β,η =

1
2 θe

1

⊗
1

2 θ̂e

1


−1

=

1
2 θe

1

⊗
−1

2 θ̂e

1

 .

Expanding δq̄tr
β,η using the quaternion product yields

δq̄tr
β,η =

1
2 θe − 1

2 θ̂e +
1
2 θe × 1

2 θ̂e

1 + 1
2 θe · 1

2 θ̂e

 . (5.36)

Since θe and θ̂e are small angle vectors, Eq. 5.36 is reduced to

δq̄tr
β,η =

1
2(θe − θ̂e)

1

 . (5.37)
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Substituting the simplified version of δqtr
β,η in Eq. 5.37 into Eq. 5.35 yields

δq̄tr
i =

1
2(θe − θ̂e) + T̂β,ηTtr

b δqb
i

1


=

1
2(βtr

q − β̂tr
q + ηtr

q ) + T̂β,ηTtr
b δqb

i

1


=

1
2(δβtr

q + ηtr
q ) + T̂β,ηTtr

b δqb
i

1

 . (5.38)

Applying the definition of the small angle quaternion to δq̄tr
i and δqb

i , namely

δq̄tr
i ≈

1
2 δΨ

1

 and δq̄b
i ≈

1
2 δα

1

 ,

Eq. 5.38 becomes 1
2 δΨ

1

 =

1
2(δβtr

q + ηtr
q ) +

1
2T̂β,ηTtr

b δα

1

 . (5.39)

Therefore, the final form of the quaternion measurement deviation is

δΨ = T̂β,ηTtr
b δα + δβtr

q + ηtr
q . (5.40)

5.5.1 TRIAD Algorithm

For purposes of modeling the Kalman filter equations, it was assumed that there is an

onboard sensor that can provide direct quaternion measurements. However, this is not

the case. This section presents the procedure for attitude determination using the TRIAD

algorithm to utilize the magnetometer along with the GPS and an on-board model of

Earth’s magnetic field to provide a computed attitude measurement.
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5.5.1.1 TRIAD Algorithm Definition

The TRIAD algorithm can compute an attitude estimate given two vector pairs de-

scribed in an inertial and body reference frame, respectively. Typically, the inertial ref-

erence frame description is known. Examples of known inertial vectors are gravity on

Earth, the direction of the sun, Earth’s magnetic field, and star locations. Body reference

frame descriptions are measured by sensors, and both are used to retrieve attitude infor-

mation. Recall that a single pair of vectors related by

vb = Tb
i vi ,

can yield an infinite number of solutions for Tb
i because there exists an infinite number

of transformations that can map the inertial vector to the body vector. Even then, the

true transformation cannot be determined through a single pair of vectors. With that,

the TRIAD algorithm utilizes two pairs to compute the attitude of an object. Given two

vectors r and v in body and inertial reference frames,

(ri, rb) and (vi, vb) ,

the inertial to body transformation matrix is then

Tb
i =

[
t1b t2b t3b

] [
t1i t2i t3i

]T
, (5.41)

where the vectors of the two matrices can either be

t1b =
rb∥∥rb
∥∥ , t2b =

rb × vb∥∥rb × vb
∥∥ , t3b = t1b × t2b , (5.42)

t1i =
ri∥∥ri
∥∥ , t2i =

ri × vi∥∥ri × vi
∥∥ , and t3i = t1i × t2i , (5.43)
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or

t1b =
vb∥∥vb
∥∥ , t2b =

vb × rb∥∥vb × rb
∥∥ , t3b = t1b × t2b , (5.44)

t1i =
vi∥∥vi
∥∥ , t2i =

vi × ri∥∥vi × ri
∥∥ , and t3i = t1i × t2i . (5.45)

Either set will yield the correct transformation matrix, assuming both vectors are exactly

known with zero uncertainty. In the more realistic case that both vectors have associated

uncertainties in their information, the one with the least uncertainty is utilized for t1b

and t1i. This allows the more accurate vector to influence the accuracy of the overall

attitude estimate. The attitude quaternion can be found by modifying Eq. 2.29 to use the

transformation matrix as an input, rather than the rotation matrix, by simply transposing

the transformation matrix obtained from the TRIAD method,

q̄b
i =

qb
i

q0
b
i

 =
1
2



TT
3,2−TT

2,3√
1+TT

1,1+TT
2,2+TT

3,3

TT
1,3−TT

3,1√
1+TT

1,1+TT
2,2+TT

3,3

TT
2,1−TT

1,2√
1+TT

1,1+TT
2,2+TT

3,3√
1 + TT

1,1 + TT
2,2 + TT

3,3


.

5.5.1.2 TRIAD Algorithm Application

Utilizing our on-board resources, the attitude can be computed. A model of Earth’s

magnetic field can provide the magnetic field in the NED reference frame bned. Given

the position of the satellite and the magnetometer with respect to the satellite, we can

also compute ḃned through a finite difference approximation between two short intervals

of time (in this case, between Kalman filter updates). We can also obtain both btr and

ḃtr from the magnetometer. Therefore, we can utilize the two pairs of vectors to obtain

an attitude measurement. Our TRIAD vector pairs are (btr, bned) and (ḃtr, ḃned). The
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TRIAD algorithm is then employed, using (btr, bned) as the first pair since it has a lower

associated uncertainty than (ḃtr, ḃned). See Appendix C for a detailed error analysis. We

then have

Ttr
ned =

[
t1tr t2tr t3tr

] [
t1ned t2ned t3ned

]T
, (5.46)

with

t1tr =
btr∥∥btr
∥∥ , t2tr =

btr × ḃtr∥∥∥btr × ḃtr
∥∥∥ , t3tr = t1tr × t2tr , (5.47)

t1ned =
bned∥∥bned

∥∥ , t2ned =
bned × ḃned∥∥∥bned × ḃned

∥∥∥ , and t3ned = t1ned × t2ned . (5.48)

Note that this yields the NED to TRIAD transformation, not the inertial to TRIAD trans-

formation. To obtain the inertial to TRIAD transformation, we must first compute the

inertial to NED transformation, which is given by

Tned
i = Tned

f (φ, θ)T f
i (t) ,

where (φ, θ) are the latitude and longitude, respectively. Each transformation is presented

in the following subsections.

5.5.1.3 ECEF to NED

The ECEF to NED transformation is a sequence of single axis transformation matrices

that are dependent on latitude φ and longitude θ using the spherical coordinate system

convention in Figure 5.2. The transformation sequence is given as

Tned
f (φ, θ) = Ty(−90◦)Tx(θ)Ty(−φ) . (5.49)

Expanding Eq. 5.49, we have
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Figure 5.2: Spherical Coordinate System Convention

Tned
f (φ, θ) = Ty(−90◦)Tx(θ)Ty(−φ)

=


cos(−90◦) 0 − sin(−90◦)

0 1 0

sin(−90◦) 0 cos(−90◦)




1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)




cos(−φ) 0 − sin(−φ)

0 1 0

sin(−φ) 0 cos(−φ)



=


0 0 1

0 1 0

−1 0 0




1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)




cos(φ) 0 sin(φ)

0 1 0

− sin(φ) 0 cos(φ)

 (5.50)

=


0 − sin(θ) cos(θ)

0 cos(θ) sin(θ)

−1 0 0




cos(φ) 0 sin(φ)

0 1 0

− sin(φ) 0 cos(φ)

 ,
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which yields the ECEF to NED transformation,

Tned
f (φ, θ) =


− cos θ sin φ − sin θ cos θ cos φ

− sin θ sin φ cos θ sin θ cos φ

− cos θ 0 − sin φ

 . (5.51)

5.5.1.4 ECI to ECEF

The fixed reference frame parameters are defined for Earth as well as other planets

and satellites by the IAU/IAG/COSPAR Working Group on Cartographic Coordinates

and Rotational Elements of the Planets and Satellites. These definitions vary from planet

to planet and satellite to satellite. The parameters for Earth’s inertial to fixed reference

frame transformation are visualized in Figure 5.3. These parameters define the location

of the north pole and prime meridian of the planet with respect to the inertial reference

frame and are the right ascension of the north pole α0, the declination of the north pole

Figure 5.3: Fixed Frame Planetary Reference System
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δ0, and the twist angle W, where

α0 = 0.00− 0.641T ,

δ0 = 90.00− 0.557T ,

W = 190.147 + 360.9856235d ,

and where T is the interval in Julian centuries (of 36525 days) from the standard J2000

epoch and d is the interval in days from the standard J2000 epoch. Given these parame-

ters, the ECI to ECEF transformation matrix T f
i (t) is then given by a 3-1-3 Euler sequence,

T f
i (t) = Tz(90◦ + α0)Tx(90◦ − δ0)Tz(W) ,

where we note that α0, δ0, and W are all functions of time.
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Chapter 6: Kalman Filter Implementation

The equations derived for the state dynamics, IMU, and sensors are presented and

linearized for state space representation. The position, velocity, small angle deviation,

and all error terms associated with the IMU and sensors are the estimated terms that

make up the state vector,

x =



ri
imu

vi
imu

δα

β
f
pos

β
f
vel

βtr
q

ma

na

sa

βa

mg

ng

sg

βg



=



ri
imu

vi
imu

δα

β
f
pos

β
f
vel

βtr
q

ea

eg



∈ R42 ,

where ea and eg are the vectors of systematic error terms for the accelerometer and gyro-

scope, respectively.
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6.1 F Matrix

The estimation error differential equations for position, velocity, and small angle quater-

nion deviation were derived in Chapter 4 as

δṙi
imu = δvi

imu

δv̇i
imu = Gδri

imu/i −GT̂i
b( ˆ̄qi

b)[r
b
cg/imu×]δα + T̂i

b( ˆ̄qi
b)T

b
cδac

imu,ng − T̂i
b( ˆ̄qi

b)T
b
c [â

c
imu,ng×]δα .

(6.1)

δα̇ = δωb
b/i − [ω̂b

b/i×]δα .

The accelerometer and gyroscope estimation error equations are written in terms of their

systematic errors in Chapter 5 are

δac
imu,ng = −[ac

imu,ng,m×]δma − [ac
imu,ng,m|×|]δna − [ac

imu,ng,mr]δsa − δβa − ηa

δωc
b/i = −[ω

c
b/i,m×]δmg − [ωc

b/i,m|×|]δng − [ωc
b/i,mr]δsg − δβg − ηg .

(6.2)

Substituting δac
imu,ng and δωc

b/i in Eq. 6.2 into the state differential equations in Eq. 6.1

yields the final form of the position, velocity, and small angle quaternion deviation dif-

ferential equations in terms of all the IMU systematic error terms. However, the angular

velocity estimation error equation is derived in the IMU case reference frame, therefore, it

is transformed into the body reference frame to be substituted into the small angle quater-

nion deviation differential equation. Applying the transformation to the angular velocity

estimation error yields

δωb
b/i = Tb

cδωc
b/i

= −Tb
c [ω

c
b/i,m×]δmg − Tb

c [ω
c
b/i,m|×|]δng − Tb

c [ω
c
b/i,mr]δsg − Tb

cδβg − Tb
cηg ,
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and

ω̂b
b/i = Tb

cω̂c
b/i .

Making the substitution of the accelerometer and gyroscope estimation error equations

into the position, velocity, and small angle quaternion deviation differential equations

yields the final form of the differential equation set,

δṙi
imu = δvi

imu

δv̇i
imu = Gδri

imu/i −GT̂i
b( ˆ̄qi

b)[r
b
cg/imu×]δα− T̂i

b( ˆ̄qi
b)T

b
c [a

c
imu,ng,m×]δma

− T̂i
b( ˆ̄qi

b)T
b
c [a

c
imu,ng,m|×|]δna − T̂i

b( ˆ̄qi
b)T

b
c [a

c
imu,ng,mr]δsa

− T̂i
b( ˆ̄qi

b)T
b
cδβa − T̂i

b( ˆ̄qi
b)T

b
cηa − T̂i

b( ˆ̄qi
b)T

b
c [â

c
imu,ng×]δα (6.3)

δα̇ = − Tb
c [ω

c
b/i,m×]δmg − Tb

c [ω
c
b/i,m|×|]δng − Tb

c [ω
c
b/i,mr]δsg

− Tb
cδβg − Tb

cηg − Tb
c [ω̂

c
b/i×]δα .

The biases are modeled as random constants, therefore

δβ̇
f
pos = 0 , δβ̇

f
vel = 0 , δβ̇tr

q = 0 , β̇a = 0 , and β̇g = 0 . (6.4)

The IMU systematic errors are also modeled as random constants, therefore

δṁa = 0 , δṅa = 0 , δṡa = 0 , δṁg = 0 , δṅg = 0 , and δṡg = 0 . (6.5)

Note that once the state estimates are available, we can correct the estimated non-

gravitational acceleration and angular velocity terms via

âc
imu,ng = −ac

imu,ng,m + [ac
imu,ng,m×]m̂a − [ac

imu,ng,m|×|]n̂a − [ac
imu,ng,mr]ŝa − β̂a

ω̂c
b/i = −ωc

b/i,m + [ωc
b/i,m×]m̂g − [ωc

b/i,m|×|]n̂g − [ωc
b/i,mr]ŝg − β̂g .
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6.1.1 Jacobian Matrix - Dynamics

The results from Eqs. 6.3, 6.4, and 6.5 are used to determine the Jacobian, F. Specifi-

cally,

F =



03x3
∂δṙi

imu
∂vi

imu
03x3 03x9 03x12 03x12

∂δv̇i
imu

∂ri
imu

03x3
∂δv̇i

imu
∂δα 03x9

∂δv̇i
imu

∂ea
03x12

03x3 03x3
∂δα̇
∂δα 03x9 03x12

∂δα̇
∂eg

033x3 033x3 033x3 033x9 033x12 033x12


,

where

∂δṙi
imu

∂vi
imu

= I3x3

∂δv̇i
imu

∂ri
imu

= G

∂δv̇i
imu

∂δα
= −GT̂i

b( ˆ̄qi
b)[r

b
cg/imu×]− T̂i

b( ˆ̄qi
b)T

b
c [â

c
imu,ng×]

∂δv̇i
imu

∂ea
=

[
− T̂i

b( ˆ̄qi
b)T

b
c [a

c
imu,ng,m×] − T̂i

b( ˆ̄qi
b)T

b
c [a

c
imu,ng,m|×|] . . .

. . .− T̂i
b( ˆ̄qi

b)T
b
c [a

c
imu,ng,mr] − T̂i

b( ˆ̄qi
b)T

b
c

]
∂δα̇

∂δα
= −Tb

c [ω̂
c
b/i×]

∂δα̇

∂eg
=

[
−Tb

c [ω
b
b/i,m×] −Tb

c [ω
b
b/i,m|×|] −Tb

c [ω
b
b/i,mr] −Tb

c

]
.

6.2 H Matrix

The measurement deviation equations for the position, velocity, and quaternion were

derived in Chapter 5 as
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δr f
gps = T f

i (t)δri
imu − T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]δα + δβ

f
pos + η

f
pos

δv f
gps = T f

i (t)δvi
imu + T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×][ω

b
b/i,m×]δmg

+ T f
i (t)T̂

i
b( ˆ̄qi

b)[r
b
gps/imu×][ω

b
b/i,m|×|]δng + T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×][ω

b
b/i,mr]δsg

+ T f
i (t)T̂

i
b( ˆ̄qi

b)[r
b
gps/imu×]δβg + T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]ηg (6.6)

+ T f
i (t)T̂

i
b( ˆ̄qi

b)

[[
rb

gps/imu × ω̂b
b/i

]
×
]

δα + δβ
f
vel + η

f
vel

δΨ = T̂β,ηTtr
b δα + δβtr

q + ηtr
q .

The velocity measurement deviation is written in terns of the body angular velocity in

the body reference frame, however, the body angular velocity equation is written in the

IMU case reference frame. Applying the case to body transformation Tb
c yields the final

form of the velocity measurement deviation,

δv f
gps = T f

i (t)δvi
imu + T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]T

b
c [ω

c
b/i,m×]δmg

+ T f
i (t)T̂

i
b( ˆ̄qi

b)[r
b
gps/imu×]T

b
c [ω

c
b/i,m|×|]δng

+ T f
i (t)T̂

i
b( ˆ̄qi

b)[r
b
gps/imu×]T

b
c [ω

c
b/i,mr]δsg

+ T f
i (t)T̂

i
b( ˆ̄qi

b)[r
b
gps/imu×]T

b
cδβg + T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]T

b
cηg

+ T f
i (t)T̂

i
b( ˆ̄qi

b)

[[
rb

gps/imu × Tb
cω̂c

b/i

]
×
]

δα + δβ
f
vel + η

f
vel . (6.7)

The estimated angular velocity is corrected via

ω̂c
b/i = ωc

b/i,m + [ωc
b/i,m×]m̂g − [ωc

b/i,m|×|]n̂g − [ωc
b/i,mr]ŝg − β̂g .

The measurement matrix, H, is formed using Eq. 6.6 and Eq. 6.7 as
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H =


∂δr f

gps

∂ri
imu

03x3
∂δr f

gps
∂δα

∂δr f
gps

∂β
f
pos

03x3 03x3 03x12 03x12

03x3
∂δv f

gps

∂vi
imu

∂δv f
gps

∂δα 03x3
∂δv f

gps

∂β
f
vel

03x3
∂δv f

gps
∂ea

03x12

03x3 03x3
∂δΨ
∂δα 03x3 03x3

∂δΨ
∂βtr

q
03x12 03x12

 ,

where

∂δr f
gps

∂ri
imu

= T f
i (t)

∂δr f
gps

∂δα
= −T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]

∂δr f
gps

∂β
f
pos

= I3x3

∂δv f
gps

∂vi
imu

= T f
i (t)

∂δv f
gps

∂δα
= T f

i (t)T̂
i
b( ˆ̄qi

b)

[[
rb

gps/imu × Tb
cω̂c

b/i

]
×
]

∂δv f
gps

∂β
f
vel

= I3x3

∂δv f
gps

∂ea
=

[
T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]T

b
c [ω

c
b/i,m×] T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]T

b
c [ω

c
b/i,m|×|] . . .

. . . T f
i (t)T̂

i
b( ˆ̄qi

b)[r
b
gps/imu×]T

b
c [ω

c
b/i,mr] T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]T

b
c

]
∂δΨ

∂δα
= T̂β,ηTtr

b

∂δΨ

∂βtr
q

= I3x3 .

6.3 Propagation

The state vector and state estimation error covariance are propagated between updates

at tk and tk−1, which is assumed constant for our simulations. The update rate is limited

by the sample rates of the sensors while the propagation rate is set by the clock source
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of the embedded processor and limited by computation time. For our simulation, the

time between computations ∆tj = tj − tj−1 is assumed constant and set by the propaga-

tion frequency. Figure 6.1 depicts the Kalman filter timeline with a focus on propagation

between measurements.

Figure 6.1: MEKF Propagation Timeline

6.3.1 State Propagation

A good choice for solving differential equations numerically is the RK4 tool. Ideally,

this would be a good way to propagate the states between measurements. However, recall

that attitude quaternions can’t be added or subtracted with each other to produce another

attitude quaternion. Instead, they have a special multiplication process that describes a

sequence of positive or negative rotations. Because of this, the RK4 tool can’t be used to

propagate the attitude quaternion. Instead, the attitude will have a special propagation

method.

It can be assumed because of the small time step between tj−1 and tj that the angular

velocity and non-gravitational acceleration are constant over the small time step. This
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leads to the following equations:

vj = aj∆tj (6.8)

θj = ωj∆tj , (6.9)

where

aj = aj−1 and ωj = ωj−1 .

6.3.1.1 Attitude Propagation

Recall the quaternion multiplicative error and applying it to represent the difference

between a quaternion at time tj and time tj−1 ,

∆q̄ = ˆ̄q−j ⊗ [ ˆ̄qj−1]
−1 .

Re-arranging for ˆ̄q−j ,

ˆ̄q−j = ∆q̄⊗ ˆ̄qj−1 .

∆q̄ is the small angle quaternion that propagates the attitude quaternion from time tj−1

to time tj. The small angle is the angular displacement during the small time step ∆tj

from the angular velocity of the spacecraft. Therefore, with the small angle assumption

applied due to the small time step,

∆q̄ = q̄(θ̂j) ,

where

θ̂j = ω̂j∆tj .
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Therefore, the a priori attitude quaternion estimate is

ˆ̄q−j = q̄(θ̂j)⊗ ˆ̄qj−1 , (6.10)

where, based on Eq. 5.26,

q̄(θ̂j) =


θ̂j

‖θ̂j‖ sin‖θ̂j‖
2

cos‖θ̂j‖
2

 .

6.3.1.2 Position and Velocity Propagation

From Eq. 4.6, the velocity differential equation is given by

v̇(t) = g + TTa , (6.11)

where g is the gravitational acceleration, TT is the case to inertial transformation matrix

Ti
b(q̄

i
b)T

b
c , and a is the non-gravitational acceleration. Integrating Eq. 6.11 from t0 to t ,

∫ t

t0

v̇(t) dt =
∫ t

t0

[g + TTa] dt

v(t)− v(t0) = g[t− t0] + TTa[t− t0] .

The velocity in continuous time is

v(t) = g[t− t0] + TTa[t− t0] + v(t0) . (6.12)

Integrating Eq. 6.12, where v(t) = ṙ(t) ,

∫ t

t0

ṙ(t) dt =
∫ t

t0

[
g[t− t0] + TTa[t− t0] + v(t0)

]
dt

r(t)− r(t0) =
1
2

g[t− t0]
2 +

1
2

TTa[t− t0]
2 + v(t0)[t− t0] .
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The position in continuous time over a small time step is

r(t) =
1
2

g[t− t0]
2 +

1
2

TTa[t− t0]
2 + v(t0)[t− t0] + r(t0) . (6.13)

Eqs. 6.13 and 6.12 are formed on the assumption that the behavior of the spacecraft is

linear. Since this is only valid over a small time step ∆tj where t = tj and t0 = tj−1, the

discrete a priori position and velocity estimates are

rj =
1
2

g∆t2
j +

1
2

TTa∆t2
j + vj−1∆tk + rj−1 (6.14)

vj = g∆tj + TTa∆tj + vj−1 . (6.15)

6.3.1.3 Bias and Error Term Propagation

Since the error terms are modeled as constants,

mj = mj−1

nj = nj−1

sj = sj−1

β j = β j−1 .

6.3.2 Covariance Propagation

For the MEKF, the state estimation error covariance differential equation is

Ṗ(t) = F(x̂, t)P(t) + P(t)FT(x̂, t) + Q , (6.16)

where we propagate the covariance between updates according to Eq. 3.16 using numer-

ical integration with P(tk−1) = P+
k−1.
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6.4 Update

The update process for the MEKF differs from that of a typical extended Kalman filter.

Due to the unit constraint of attitude quaternions that invalidates addition and subtrac-

tion, a special procedure is required for the attitude quaternion update. This procedure,

in some sense, is separate from the rest of the state elements but is still implemented in

the same equations as the other state elements.

6.4.1 Position and Velocity Residual

The state residuals for position and velocity are given by Eq. 3.8 ,

rk = yk − ŷk ,

where

ŷk = hk(x̂−k ) .

yk is the measured output from the sensor and ŷk is the estimated output of the sensor.

However, for the case of the quaternion measurement, this is invalid since quaternions

cannot be subtracted. In order to compute the residual of the estimated quaternion, the

quaternion product is be used.

6.4.2 Quaternion Residual

From Eq. 5.27, the estimated quaternion measurement is given by

ˆ̄qtr
i = ˆ̄qtr

β,η ⊗ q̄tr
b ⊗ ˆ̄qb

i .

The quaternion residual of the sensor quaternion measurement and the estimated quater-

nion measurement is

δq̄tr
i = q̄tr

i ⊗ [ ˆ̄qtr
i ]
−1 .
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When computing the residual for the quaternion, the result is a small angle quaternion of

the form

δq̄tr
i =

1
2rk

1

 ,

where rk is the quaternion measurement residual vector that is used in Eq. 3.8. Therefore,

for the attitude quaternion, the measurement residual is

rk = 2δqtr
i . (6.17)

6.5 Position and Velocity Update

The state update equation for position, velocity and all the error terms are given by

Eq. 3.10,

x̂+k = x̂−k + Kkrk .

6.5.1 Quaternion Update

For updating the quaternion using Eq. 3.10, the same issue arises where addition or

subtraction is invalid. The a priori quaternion estimate cannot be added to the quaternion

residual, otherwise the the addition produces a quaternion with ||q̄|| > 1. For this reason,

δα is estimated, rather than the quaternion itself. This can be done because it is assumed

that the error between the true and estimated quaternion is small. However, δα is not

propagated like the quaternion is. Applying Eq. 3.10 to δα yields

δα̂+
k = δα̂−k + Kkrk .

δα̂−k is the predicted or a priori deviation or error of the predicted quaternion ˆ̄q−k . How-

ever, the estimation error cannot be predicted before the update because that is the pur-
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pose of the update. Therefore, for the quaternion small angle deviation δα ,

δα̂−k = 0 ,

and the estimated quaternion error is

δα̂+
k = Kkrk . (6.18)

The attitude quaternion is updated through

ˆ̄q+
k =

1
2 δα̂+

k

1

⊗ ˆ̄q−k . (6.19)

6.5.2 Covariance Update

The state estimation error covariance update remains the same and is given in Eq.

3.11,

P̂+
k = [I−KkHk(x̂−k )]P̂

−
k .

Note that for the quaternion, the covariance being estimated is actually the covariance of

δα̂ . This corresponds to the estimation error in each axis of the attitude estimate.

6.6 Stochastic Modeling of Error Terms

The stochastic models for the IMU systematic errors, sensor errors, and process noise

are presented. From Eq. 3.15, sensor noise is modeled as a white noise sequence. There-

fore, for our attitude, position, and velocity sensor noise terms we have

E{ηtr
q } = 0 , E{ηtr

q · ηtr
q } = Rq ,
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E{ηi
gps/i} = 0 , E{ηi

gps/i · ηi
gps/i} = Rr ,

E{ηi
gps} = 0 , E{ηi

gps · ηi
gps} = Rv .

From Eq. 3.14, the process noise is modeled as a white noise sequence. For our model,

uncertainty comes from accelerometer and gyroscope noise. Therefore, for the velocity

and attitude process noise terms we have

E{ηa} = 0 , E{ηa · ηa} = Qaδ(t− τ) ,

E{ηg} = 0 , E{ηg · ηg} = Qgδ(t− τ) .

The IMU systematic errors are modeled as random constants, as well as the GPS and

attitude biases. Therefore, for the accelerometer error terms we have

E{ma} = 0 , E{ma · ma} = Pma ,

E{na} = 0 , E{na · na} = Pna ,

E{sa} = 0 , E{sa · sa} = Psa ,

E{βa} = 0 , E{βa · βa} = Pβa .

For the gyroscope error terms we have

E{mg} = 0 , E{mg · mg} = Pmg ,

E{ng} = 0 , E{ng · ng} = Png ,

E{sg} = 0 , E{sg · sg} = Psg ,

E{βg} = 0 , E{βg · βg} = Pβg .
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For the GPS position, GPS velocity, and attitude bias terms we have

E{β f
pos} = 0 , E{β f

pos · β
f
pos} = P

β
f
pos

,

E{β f
vel} = 0 , E{β f

vel · β
f
vel} = P

β
f
vel

,

E{βtr
q } = 0 , E{βtr

q · βtr
q } = Pβtr

q
.
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Chapter 7: Kalman Filter Tuning and Results

The MEKF results are presented here. First we evaluate the results from a single run.

This provides a glimpse of how well the MEKF is estimating the state vector and state

estimation error covariance. It will also highlight the unobservable states, if any. The

unobservable states are indicated by non-converging state estimation error covariances.

Furthermore, we employ more analyses tools to properly scrutinize the MEKF perfor-

mance and ensure that the filter is performing in a realistic manner.

Following a single simulation is the Monte-Carlo analysis of the Kalman filter. This

involves simulating multiple runs and taking the average of the state error history and

sample error variance. The average state error and square root of variance over hundreds

of runs are plotted with a variance plot from a single run. The sample error variance

and the square root of estimate variance should closely match for a well-tuned filter. In

mathematical terms, we want to confirm that

∑m
n=1(xn − x̂−n )(xn − x̂−n )T

m− 1
≈ P−n ∀ n

and
∑m

n=1(xn − x̂+n )(xn − x̂+n )T

m− 1
≈ P+

n ∀ n ,

where m is the sample size. This is confirmation that the filter is working properly and

that the variance estimate is accurately representing the true error bounds, i.e., the results

represent reality.

The next analysis is the error budget. This is a detailed investigation of each error

contribution to the state estimation error. Through the error budget we can see which
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sources of uncertainty (such as noise, bias, or systematic errors) contribute the most to the

overall uncertainty of the position, velocity, and attitude estimates. If certain error sources

are found to contribute a negligible amount of error to the 9 main state elements, then

they may be considered for removal from our system model to further reduce complexity

while achieving similar estimation accuracy.

Consideration of error group removal is dependent on a sensitivity analysis which

follows from the error budget and examines the effect of increasing or decreasing the

scale of certain error groups on the overall estimation accuracy. This is useful in case

an error group is much larger than expected. If the state estimate accuracy is affected

by scaling a group, then the error group is sensitive. If scaling does not affect the state

estimation error then the error group is negligible. Following from the sensitivity analysis

is the sub-optimal filter design. If any error groups are found to have insignificant effects

on the overall uncertainty from the error budget and sensitivity analysis then we may

remove them from the model. However, removing information from the model will affect

the uncertainty in the model. To make up for the reduced amount of information in the

model we may increase the process noise matrix and tune the filter.

7.1 Simulation Trajectory

The attitude trajectory used in this simulation captures the behavior of a cubesat de-

ployed in a 28.5◦ orbit. The cubesat will experience an initial angular rate of around 10◦/s

caused by the spring-loaded deployment. The onboard controller will stabilize the rate of

the spacecraft and proceed with sun-normal solar panel pointing. This simulation covers

the time it takes to de-tumble (estimated at 30 seconds) and 170 seconds of stable flying.
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7.2 Single Run Results

The filter uncertainty parameters are given in Table 7.1 and are defined for all runs.

These parameters reflect performance of the typical off-the-shelf low-cost MEMS sensors

that are commercially available and similar to the sensors utilized aboard our satellite

[16, 17].

Table 7.1: Kalman Filter Uncertainty Parameters

Variable Description Value(STD)

Initial covariance

Pr Position uncertainty 4(m)
Pv Velocity uncertainty 0.11(m/s)
Pq Attitude uncertainty 0.225(rad)
Pβr GPS position bias uncertainty 1(m)
Pβv GPS velocity bias uncertainty 0.01(m/s)
Pβq Derived quaternion bias uncertainty 0.05(rad)
Pma IMU accelerometer mislaignment uncertainty 0.0032(m/s2)
Pna IMU accelerometer non-orthogonality uncertainty 0.0032(m/s2)
Psa IMU accelerometer scale factor uncertainty 0.0032(m/s2)
Pβa IMU accelerometer bias uncertainty 0.08(m/s2)
Pmg IMU gyroscope mislaignment uncertainty 0.0032(rad/s)
Png IMU gyroscope non-orthogonality uncertainty 0.0032(rad/s)
Psg IMU gyroscope scale factor uncertainty 0.0032(rad/s)
Pβg IMU gyroscope bias uncertainty 0.08(rad/s)

Measurement Noise
Rr GPS position 3(m)
Rv GPS velocity 0.1(m/s)
Rq Derived quaternion 0.175(rad)

Process Noise Qaδ(t− τ) IMU accelerometer 0.0175(m/s2)
Qgδ(t− τ) IMU gyroscope 0.0035(rad/s)

Figures 7.1 - 7.29 depict single run results for all states. For attitude, comparison plots

between the true, measured, and estimated quaternion elements are presented. For posi-

tion, velocity, and attitude, the estimation error and state estimation error covariance are

presented. For the rest of the state elements, estimation error and state estimation error

covariance plots are presented.
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Figure 7.1: Quaternion Vector Elements

Figure 7.2: Attitude Error and Covariance
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Figure 7.3: GPS Position Error and Error Covariance (x-axis)

Figure 7.4: GPS Position Error and Error Covariance (y-axis)

Figure 7.5: GPS Position Error and Error Covariance (z-axis)
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Figure 7.6: GPS Velocity Error and Error Covariance (x-axis)

Figure 7.7: GPS Velocity Error and Error Covariance (y-axis)

Figure 7.8: GPS Velocity Error and Error Covariance (z-axis)
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Figure 7.9: Quaternion Bias Error and Error Covariance (x-axis)

Figure 7.10: Quaternion Bias Error and Error Covariance (y-axis)

Figure 7.11: Quaternion Bias Error and Error Covariance (z-axis)
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Figure 7.12: GPS Position Bias Error and Error Covariance (x-axis)

Figure 7.13: GPS Position Bias Error and Error Covariance (y-axis)

Figure 7.14: GPS Position Bias Error and Error Covariance (z-axis)
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Figure 7.15: GPS Velocity Bias Error and Error Covariance (x-axis)

Figure 7.16: GPS Velocity Bias Error and Error Covariance (y-axis)

Figure 7.17: GPS Velocity Bias Error and Error Covariance (z-axis)
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Figure 7.18: Accelerometer Misalignment and Non-Orthogonality (x-axis)

Figure 7.19: Accelerometer Scale Factor and Bias (x-axis)

Figure 7.20: Accelerometer Misalignment and Non-Orthogonality (y-axis)
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Figure 7.21: Accelerometer Scale Factor and Bias (y-axis)

Figure 7.22: Accelerometer Misalignment and Non-Orthogonality (z-axis)

Figure 7.23: Accelerometer Scale Factor and Bias (z-axis)
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Figure 7.24: Gyroscope Misalignment and Non-Orthogonality (x-axis)

Figure 7.25: Gyroscope Scale Factor and Bias (x-axis)

Figure 7.26: Gyroscope Misalignment and Non-Orthogonality (y-axis)
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Figure 7.27: Gyroscope Scale Factor and Bias (y-axis)

Figure 7.28: Gyroscope Misalignment and Non-Orthogonality (z-axis)

Figure 7.29: Gyroscope Scale Factor and Bias (z-axis)
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7.3 Monte-Carlo Results

The Monte-Carlo results are depicted in Figures 7.30 - 7.43 for 500 runs.

Figure 7.30: Monte-Carlo Attitude

Figure 7.31: Monte-Carlo Position
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Figure 7.32: Monte-Carlo Velocity

Figure 7.33: Monte-Carlo Quaternion Bias
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Figure 7.34: Monte-Carlo GPS Position Bias

Figure 7.35: Monte-Carlo GPS Velocity Bias
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Figure 7.36: Monte-Carlo Accelerometer Misalignment Error

Figure 7.37: Monte-Carlo Accelerometer Non-Orthogonality Error

125



www.manaraa.com

Figure 7.38: Monte-Carlo Accelerometer Scaling Error

Figure 7.39: Monte-Carlo Accelerometer Bias
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Figure 7.40: Monte-Carlo Gyroscope Misalignment Error

Figure 7.41: Monte-Carlo Gyroscope Non-Orthogonality Error
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Figure 7.42: Monte-Carlo Gyroscope Scaling Error

Figure 7.43: Monte-Carlo Gyroscope Bias
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7.4 Error Budget

The error budget illuminates sources of error which contribute the most towards the

overall uncertainty of the Kalman filter estimation error. The steps for producing the error

budget are

1. Run the Kalman filter simulation with all error sources active and store the Kalman

gain for every point in time. Also record the square root of variance for position,

velocity, and attitude at a single point in time where the variance has converged

and reached a steady state value.

2. Using the stored Kalman gain, re-run the Kalman filter simulation but with all error

sources turned off except one. Use the stored Kalman gain for the update stage

instead of computing the gain again. Also record the steady state square root of

variance value at the same point in time as the previous run.

3. Repeat the previous step for all error sources, alternating through each source while

all the others are off and storing the steady state square root of variance at the same

point in time.

4. Take the RSS of the steady state square root of variance from each error group run

(excluding the first run with all sources active) and compare it to the square root of

variance of the first run where all error sources were active. Both values should be

nearly identical.

The variance from each error group run is the contribution of that error group to the

overall uncertainty of the position, velocity, and attitude estimates. If the contribution

of a certain group is so small that it does not affect the uncertainty the position, veloc-

ity, and attitude, then the terms can be considered for removal from the model to further

simplify the equations and reduce computational load. Further justification beyond the
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direct contribution from a single error budget is required to constitute removal of an error

term from the model. This is done in a sensitivity analysis, where the effect of increasing

or decreasing the magnitude of the error term uncertainty on the overall estimate accu-

racy is analyzed. In the real world, these errors may be larger than expected, therefore,

we need insight into how the filter will respond to larger than expected errors. The error

sources are listed in Table 7.2.

Table 7.2: Error Group Designations

Group # Name

Initial covariance

1 Position uncertainty
2 Velocity uncertainty
3 Attitude uncertainty
4 GPS position bias uncertainty
5 GPS velocity bias uncertainty
6 Derived quaternion bias uncertainty
7 IMU accelerometer mislaignment uncertainty
8 IMU accelerometer non-orthogonality uncertainty
9 IMU accelerometer scale factor uncertainty
10 IMU accelerometer bias uncertainty
11 IMU gyroscope mislaignment uncertainty
12 IMU gyroscope non-orthogonality uncertainty
13 IMU gyroscope scale factor uncertainty
14 IMU gyroscope bias uncertainty

Measurement Noise
15 GPS position
16 GPS velocity
17 Derived quaternion

Process Noise 18 IMU accelerometer
19 IMU gyroscope

The error budget is then computed with results shown in Table 7.3. The percent contribu-

tion of each group is also computed from Table 7.3 and shown in Table 7.4.
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Table 7.3: Error Budget

Error
Group Position(m) Velocity(m/s) Attitude(deg)

1 0.2249 0.2249 0.2249 0.001432 0.001412 0.001432 0.0008236 0.001114 0.0003989
2 0.05667 0.05463 0.05649 0.004136 0.002935 0.004125 0.03077 0.08587 0.0734
3 0.0002273 0.00147 0.0008115 9.319e− 5 2.457e− 5 4.932e− 5 0.7596 0.8927 0.7627
4 0.9438 0.9438 0.9438 0.0003579 0.0003531 0.0003579 0.0002059 0.0002785 9.972e− 5
5 0.2077 0.2078 0.2077 0.01385 0.01384 0.01384 0.002277 0.01052 0.009635
6 0.001107 0.000466 0.0004178 1.957e− 5 0.0002381 2.581e− 5 2.205 2.445 2.145
7 1.821e− 7 9.456e− 6 4.79e− 8 3.997e− 8 3.65e− 6 3.529e− 9 1.677e− 6 1.79e− 6 4.998e− 6
8 1.821e− 7 9.456e− 6 4.79e− 8 3.997e− 8 3.65e− 6 3.529e− 9 1.677e− 6 1.79e− 6 4.998e− 6
9 2.037e− 5 8.824e− 8 2.355e− 6 1.773e− 7 3.497e− 8 4.216e− 6 4.778e− 6 2.504e− 5 6.541e− 7
10 0.004821 0.003695 0.0002371 0.0007167 0.0004286 0.0003683 0.01932 0.0301 0.03675
11 2.467e− 5 5.237e− 5 1.551e− 5 1.011e− 6 1.257e− 5 2.875e− 6 0.06769 0.009986 0.06762
12 2.472e− 5 5.24e− 5 1.557e− 5 1.065e− 6 1.256e− 5 2.943e− 6 0.06764 0.01018 0.06765
13 3.368e− 5 1.004e− 5 4.529e− 5 1.485e− 5 1.448e− 6 5.586e− 6 0.01658 0.06956 0.0005914
14 0.001567 0.001212 0.001752 0.0003165 0.0002445 0.000263 0.1765 0.09138 0.1725
15 0.3371 0.3374 0.3371 0.01477 0.01507 0.01477 0.008984 0.01688 0.01434
16 0.08933 0.09108 0.08933 0.02163 0.02138 0.02163 0.1117 0.192 0.1692
17 0.001387 0.001311 0.001096 0.0004112 0.0004178 0.0002366 2.168 1.794 2.185
18 0.01656 0.01323 0.01651 0.01889 0.01909 0.01888 0.08023 0.1597 0.1594
19 0.0001887 0.0002499 0.0001895 6.505e− 5 5.274e− 5 3.287e− 5 0.3556 0.3757 0.35
All 1.053 1.053 1.053 0.03541 0.03535 0.03541 3.141 3.115 3.162
RSS 1.053 1.053 1.053 0.03542 0.03538 0.03541 3.214 3.197 3.19

Difference −1.464e− 5 −9.318e− 6 −3.542e− 6 −1.646e− 5 −2.027e− 5 −6.763e− 7 −0.07274 −0.08259 −0.02817
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Table 7.4: Error Group % Contribution

Error
Group Position(m) Velocity(m/s) Attitude(deg)

1 4.558 4.559 4.558 0.1633 0.1594 0.1635 6.567e− 6 1.214e− 5 1.563e− 6
2 0.2894 0.2689 0.2876 1.363 0.6885 1.357 0.009165 0.07214 0.05294
3 4.655e− 6 0.0001946 5.935e− 5 0.0006921 4.824e− 5 0.000194 5.586 7.797 5.716
4 80.28 80.26 80.28 0.01021 0.009963 0.01022 4.104e− 7 7.586e− 7 9.771e− 8
5 3.887 3.89 3.889 15.28 15.3 15.29 5.019e− 5 0.001082 0.0009122
6 0.0001104 1.956e− 5 1.574e− 5 3.053e− 5 0.004531 5.312e− 5 47.08 58.5 45.19
7 2.989e− 12 8.056e− 9 2.068e− 13 1.273e− 10 1.064e− 6 9.933e− 13 2.722e− 11 3.136e− 11 2.454e− 10
8 2.989e− 12 8.056e− 9 2.068e− 13 1.273e− 10 1.064e− 6 9.933e− 13 2.722e− 11 3.136e− 11 2.454e− 10
9 3.739e− 8 7.016e− 13 4.998e− 10 2.504e− 9 9.775e− 11 1.418e− 6 2.21e− 10 6.133e− 9 4.204e− 12
10 0.002094 0.001231 5.067e− 6 0.04093 0.01468 0.01082 0.003615 0.008862 0.01327
11 5.486e− 8 2.471e− 7 2.168e− 8 8.144e− 8 1.262e− 5 6.593e− 7 0.04435 0.0009755 0.04493
12 5.506e− 8 2.474e− 7 2.185e− 8 9.04e− 8 1.261e− 5 6.906e− 7 0.0443 0.001015 0.04497
13 1.022e− 7 9.083e− 9 1.848e− 7 1.756e− 5 1.675e− 7 2.489e− 6 0.00266 0.04733 3.437e− 6
14 0.0002212 0.0001323 0.0002766 0.007984 0.004777 0.005516 0.3016 0.08169 0.2923
15 10.24 10.26 10.24 17.38 18.15 17.4 0.0007813 0.002788 0.002019
16 0.7192 0.7475 0.7193 37.29 36.53 37.32 0.1208 0.3608 0.2813
17 0.0001735 0.0001548 0.0001083 0.01347 0.01395 0.004464 45.52 31.5 46.9
18 0.02472 0.01577 0.02456 28.45 29.12 28.44 0.06232 0.2495 0.2497
19 3.208e− 6 5.626e− 6 3.236e− 6 0.0003372 0.0002222 8.616e− 5 1.224 1.381 1.204
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7.5 Sensitivity Analysis

The sensitivity analysis follows directly from the results of the error budget. The error

budget was computed with static uncertainty and error values. While the error budget

shows which states contribute the most towards the overall uncertainty, those contribu-

tions come from static values. Therefore, this only represents a single scenario of uncer-

tainty. To properly analyze the effect each error group on the overall uncertainty, we must

look at a range of uncertainty for each error group rather than a single point. By vary-

ing or scaling the uncertainty of each error group, we can see how it affects the Kalman

filter overall estimation uncertainty. If certain error groups are larger than expected, the

sensitivity analysis can illustrate how much of an effect a larger than expected error term

has on the performance. If scaling the error group magnitude does not change the overall

uncertainty much, then the estimate is not sensitive to the error group. However, if the

overall uncertainty increases significantly with the scaling of the error group, then the

estimate is very sensitive to that error term. This is the final step in determining which

states or error terms can be neglected to simplify the filter. If an error group is seen to

have little to no impact on all three main states (position, velocity, and attitude), then we

may remove it from our filter. The sensitivity analysis procedure is as follows:

1. Following the error budget, select the first error group from the first column of the

error budget table and scale it from 0.1 to 10.

2. Following the scaling, re-compute the root rum square of the error terms for the

chosen column and do so for the entire range of scale factors chosen.

3. Store and plot the range of RSS values for that column (in our case, rx).

4. Move to the next error group and repeat the first two steps for the rest of the error

groups.

5. Repeat the first four steps for the rest of the columns in the error budget table.
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The sensitivity analysis results are presented in Figures 7.44 - 7.52. For convenience,

position, velocity, and attitude have plots for each axis. Each plot illustrates the scaling

effects of all error groups on the corresponding state element, allowing for a direct com-

parison between the effect each error group on the estimation error. All error groups are

labeled in the legend and the most sensitive groups are called out by arrows with group

designations attached to the arrow base. This makes it easy to see the groups that exhibit

the most sensitivity, which are the most important groups to consider in this analysis. For

more detailed sensitivity plots, the scaling effect of each error group is plotted individu-

ally for each state element in appendix B.

Figure 7.44: x-axis Position Sensitivity
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Figure 7.45: y-axis Position Sensitivity

Figure 7.46: z-axis Position Sensitivity
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Figure 7.47: x-axis Velocity Sensitivity

Figure 7.48: y-axis Velocity Sensitivity
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Figure 7.49: z-axis Velocity Sensitivity

Figure 7.50: x-axis Attitude Sensitivity
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Figure 7.51: y-axis Attitude Sensitivity

Figure 7.52: z-axis Attitude Sensitivity
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From the sensitivity analysis, the Kalman filter uncertainty is most sensitive to groups

1, 2, 3, 4, 5, 6, 15, 16, 17, and 19. Therefore, groups 7, 8, 9, 10, 11, 12, 13, and 14 may be

considered for removal due to their low sensitivity effects.

7.6 Sub-Optimal Filter Design

Given the computational limitations of a computer onboard a nanosatellite, an optimal

filter such as the one derived in this thesis may be too computationally expensive. To

increase performance while maintaining similar accuracy, we consider a sub-optimal filter

which is derived from our optimal filter through removal of error terms that don’t have

any significant impact on the overall estimation uncertainty.

We now consider the results from both the error budget and sensitivity analysis. The

error budget illuminated error groups that contributed the most to the overall state uncer-

tainty, specifically, Table 7.4 showed us which error groups had the most percent contribu-

tion to the overall uncertainty. If a certain error group contributed very little, then it could

be considered for removal following a sensitivity analysis. We now consider those terms.

If those terms show little to no effect on the overall uncertainty when scaled throughout a

range of scale factors, then they can be removed from the filter. From the error budget, the

terms that contributed very little to the uncertainty of all states were groups 7, 8, 9, 11, 12,

and 13. These are the accelerometer and gyroscope systematic errors, respectively. Since

these error groups also intersect with the terms that cause the least effect on estimation

sensitivity, these terms may be removed. Removing these error terms, our sub-optimal

state then becomes

x =

[
ri

imu/i vi
imu/i δα βi

gps/i βi
gps βtr

q βa βg

]T
.

With this new state defined, we proceed with removing the IMU systematic error terms
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from Eq. 6.3. Doing so will yield a new set of state estimation error differential equations

for the sub-optimal filter,

δṙi
imu/i = δvi

imu/i (7.1)

δv̇i
imu = Gδri

imu/i −GT̂i
b( ˆ̄qi

b)[r
b
cg/imu×]δα− T̂i

b( ˆ̄qi
b)T

b
cδβa − T̂i

b( ˆ̄qi
b)T

b
cηa

− T̂i
b( ˆ̄qi

b)T
b
c [â

c
imu,ng×]δα (7.2)

δα̇ = − Tb
cδβg − Tb

cηg − Tb
c [ω̂

c
b/i×]δα (7.3)

δβ̇i
gps/i = 0 (7.4)

δβ̇i
gps = 0 (7.5)

δβ̇tr
q = 0 (7.6)

δβ̇a = 0 (7.7)

δβ̇g = 0 . (7.8)

Removing the IMU systematic error terms from Eq. 6.7 will yield a new set of measure-

ment deviation equations for the sub-optimal filter,

δr f
gps = T f

i (t)δri
imu − T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]δα + δβ

f
pos + η

f
pos (7.9)

δv f
gps = T f

i (t)δvi
imu + T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]T

b
cδβg + T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]T

b
cηg

+ T f
i (t)T̂

i
b( ˆ̄qi

b)

[[
rb

gps/imu × Tb
cω̂c

b/i

]
×
]

δα + δβ
f
vel + η

f
vel (7.10)

δΨ = T̂β,ηTtr
b δα + δβtr + ηtr . (7.11)

This is a significant reduction in complexity compared to the original state estimation

error differential equations and measurement deviation equations.
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There are 24 states in the state vector. Therefore, the sub-optimal F ∈ R24x24 is

F =



03x3
∂δṙi

imu
∂vi

imu
03x3 03x9 03x3 03x3

∂δv̇i
imu

∂ri
imu

03x3
∂δv̇i

imu
∂δα 03x9

∂δv̇i
imu

∂βa
03x3

03x3 03x3
∂δα̇
∂δα 03x9 03x3

∂δα̇
∂βg

015x3 015x3 015x3 015x9 015x3 015x3


,

where

∂δṙi
imu

∂vi
imu

= I3x3

∂δv̇i
imu

∂ri
imu

= GI3x3

∂δv̇i
imu

∂δα
= −GT̂i

b( ˆ̄qi
b)[r

b
cg/imu×]− T̂i

b( ˆ̄qi
b)T

b
c [â

c
imu,ng×]

∂δv̇i
imu

∂βa
= −T̂i

b( ˆ̄qi
b)T

b
c

∂δα̇

∂δα
= −Tb

c [ω̂
c
b/i×]

∂δα̇

∂βg
= −Tb

c .

The sub-optimal H ∈ R9x24 is

H =


∂δr f

gps

∂ri
imu

03x3
∂δr f

gps
∂δα

∂δr f
gps

∂β
f
pos

03x3 03x3 03x3 03x3

03x3
∂δv f

gps

∂vi
imu

∂δv f
gps

∂δα 03x3
∂δv f

gps

∂β
f
vel

03x3 03x3
∂δv f

gps
∂βg

03x3 03x3
∂δΨ
∂δα 03x3 03x3

∂δΨ
∂βtr

q
03x3 03x3

 .

where
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∂δr f
gps

∂ri
imu

= T f
i (t)

∂δri
gps

∂δα
= −T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]

∂δri
gps

∂β
f
pos

= I3x3

∂δvi
gps

∂vi
imu

= T f
i (t)

∂δvi
gps

∂δα
= T f

i (t)T̂
i
b( ˆ̄qi

b)

[[
rb

gps/imu × Tb
cω̂c

b/i

]
×
]

∂δv f
gps

∂β
f
vel

= I3x3

∂δv f
gps

∂βg
= T f

i (t)T̂
i
b( ˆ̄qi

b)[r
b
gps/imu×]T

b
c

∂δΨ

∂δα
= T̂β,ηTtr

b

∂δΨ

∂βtr
q

= I3x3 .

Since this sub-optimal filter is created by removing some of the error terms, we may

have to increase our model uncertainty by modifying the process noise matrix. This is

dependent on simulation results. We are removing error terms from the filter model,

making the model less accurate which directly affects the estimation error. To make up

for this in the case that the accuracy exhibits a noticeable change, the model uncertainty is

increased to accommodate for these changes. In the case of our simulations, there was no

significant or noticeable change in estimation error, therefore, further significant tuning

of the process noise was not necessary.
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7.6.1 Sub-Optimal Filter Single Run Results

Figures 7.53 - 7.75 depict single run results for all states. For the states that contain

measurements, comparison plots are shown. For the rest of the states, covariance plots

are shown.

Figure 7.53: Quaternion Vector Elements

Figure 7.54: Attitude Error and Covariance
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Figure 7.55: GPS Position Error and Error Covariance (x-axis)

Figure 7.56: GPS Position Error and Error Covariance (y-axis)

Figure 7.57: GPS Position Error and Error Covariance (z-axis)
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Figure 7.58: Velocimeter Error and Error Covariance (x-axis)

Figure 7.59: Velocimeter Error and Error Covariance (y-axis)

Figure 7.60: Velocimeter Error and Error Covariance (z-axis)
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Figure 7.61: Quaternion Bias Error and Error Covariance (x-axis)

Figure 7.62: Quaternion Bias Error and Error Covariance (y-axis)

Figure 7.63: Quaternion Bias Error and Error Covariance (z-axis)
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Figure 7.64: GPS Position Bias Error and Error Covariance (x-axis)

Figure 7.65: GPS Position Bias Error and Error Covariance (y-axis)

Figure 7.66: GPS Position Bias Error and Error Covariance (z-axis)
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Figure 7.67: GPS Velocity Bias Error and Error Covariance (x-axis)

Figure 7.68: GPS Velocity Bias Error and Error Covariance (y-axis)

Figure 7.69: GPS Velocity Bias Error and Error Covariance (z-axis)
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Figure 7.70: Accelerometer Bias Error and Error Covariance (x-axis)

Figure 7.71: Accelerometer Bias Error and Error Covariance (y-axis)

Figure 7.72: Accelerometer Bias Error and Error Covariance (z-axis)
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Figure 7.73: Gyroscope Bias Error and Error Covariance (x-axis)

Figure 7.74: Gyroscope Bias Error and Error Covariance (y-axis)

Figure 7.75: Gyroscope Bias Error and Error Covariance (z-axis)
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7.6.2 Sub-Optimal Filter Monte Carlo Results

The Monte-Carlo results are depicted in Figures 7.76 - 7.83.

Figure 7.76: Monte-Carlo Attitude

Figure 7.77: Monte-Carlo Position
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Figure 7.78: Monte-Carlo Velocity

Figure 7.79: Monte-Carlo Quaternion Bias
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Figure 7.80: Monte-Carlo GPS Position Bias

Figure 7.81: Monte-Carlo GPS Velocity Bias
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Figure 7.82: Monte-Carlo Accelerometer Bias

Figure 7.83: Monte-Carlo Gyroscope Bias
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Chapter 8: Conclusion

8.1 Summary of Results

This investigation shows that utilizing radically inexpensive MEMS technology as a

substitution for high-precision attitude sensors and mathematically complex models is

viable for most smallsat missions. Given the satellite constraints, we were able to com-

pute attitude measurements with an uncertainty of ±10◦. Given the mission requirement

to maintain a sun-pointing attitude within ±20◦, a ±10◦ is certainly within that range,

but may not provide good feedback to the attitude controller. To minimize this uncer-

tainty we derived our MEKF and reduced the overall uncertainty to below ±5◦ while

confirming that the results seen in our simulations represent reality through a high fi-

delity performance analysis of the MEKF. The Monte Carlo simulation shows that the

Kalman filter estimated uncertainty matches the true estimation error when using dif-

ferent initial conditions. The error budget analysis revealed that the accelerometer and

gyroscope systematic errors excluding bias showed very little contribution to the overall

uncertainty of position, velocity, and attitude. Following the error budget with a sensitiv-

ity analysis it is shown that the position, velocity, and attitude were not sensitive to the

scaling of these error groups. Therefore, we justifiably removed these terms from the state

model and significantly simplified the complexity of our system. Initially, the optimal sys-

tem had 42 elements. By removing the accelerometer and gyroscope non-orthogonality,

misalignment, and scaling errors, we reduce the system to a sub-optimal 24 state filter.

This allows much faster computation time and better real-time performance for a system

that is already computationally constrained.
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Through our single run results it is shown that there are unobservable states. The most

significant of the unobservable states are the GPS and quaternion biases. While they do

exhibit convergence in their estimated uncertainties, their uncertainties remain constant

and relatively large; they also have large contributions to the overall estimates of position

and attitude. The remaining unobservable states are the accelerometer and gyroscope

systematic errors, excluding bias. However, since those terms were removed from the

system due to their negligible contributions, the Kalman filter’s inability to observe those

states was not an issue. These error terms get "soaked up" by the bias term and since the

bias for the accelerometer and gyroscope is observable, we can confidently remove these

systematic error terms and, if necessary, adjust our tuning through the process noise to

accommodate for the added uncertainty in our model.

The presence of unobservable errors such as the quaternion and GPS biases signifi-

cantly downgrades the estimates of this particular Kalman filter, however, much can be

done to minimize their effects. Since precise position estimation for our mission is not

required, the GPS bias can be neglected for the purpose of our mission. The attitude bias

significantly affects the attitude estimate if it is large enough and cannot be neglected.

Since our derived attitude sensor measurement relies on magnetic field measurements,

bias can come from soft/hard iron effects and alternating-current (AC) effects from the

satellite power system. In this simulation, the bias uncertainty is small due to our strate-

gic placement of the IMU which isolates the magnetometer from these sources of error. If

our derived attitude measurements exhibit no measurement bias, then the attitude esti-

mation accuracy can be further improved.

One way to improve accuracy is to minimize the magnetic interference or change our

method of measuring attitude. Camera-based attitude sensors typically do not experience

this significant bias and there is research currently being conducted on utilizing off the

shelf cameras as star trackers [18]; of these cameras the Raspberry Pi camera is the one

of most interest due to its size and compatibility with our system. The magnetometer
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may also be shielded against the AC effects if strategic placement is constrained, as well

as the soft/hard iron effects calibrated to eliminate as much interference as possible, but

a bias will still always be present. These calibration techniques may only decrease our

uncertainty of the bias.

8.2 Future Work

Given the unobservability of the GPS and quaternion biases, future research may focus

on including other sensors in the system. A relatively new field of research being pursued

for navigation and communications missions is cubesat formation flying. If body-relative

position and attitude measurements can be provided from another cubesat in a swarm of

cubesats, then the biases can potentially be observed. This is a topic worth investigating,

since formation flying of cubesats may require precise position estimation to safely avoid

collision and allow for precise pointing of RF antennas and solar arrays.

Another method that can reduce both bias and noise magnitude is use of dual mag-

netometers. This is feasible for our system given the size of the IMU. Since the TRIAD

algorithm utilizes two vector pair observations, two magnetometer pairs would suffice

as long as they are mounted in different orientations. This would eliminate the need for

(ḃtr, ḃned) as the second pair along with the pre-processing of ḃtr. Since ḃtr has a signif-

icantly higher error magnitude than btr, the overall attitude uncertainty would become

much smaller. Since the IMU uses i2c communication, an additional IMU would not be

challenging to incorporate into the satellite system.
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Appendix A: Nomenclature

AC Alternating Current

ADCS Attitude Determination and Control System

DC Direct Current

ECEF Earth-Centered Earth Fixed

ECI Earth-Centered Inertial

EKF Extended Kalman Filter

GPS Global Positioning System

GNC Guidance Navigation and Controls

IMU Inertial Measurement Unit

MEKF Multiplicative Extended Kalman Filter

MEMS Micro Electro-Mechanical System

NED North-East-Down

NOAA National Oceanic and Atmospheric Administration

PSD Power Spectral Density

RK4 Runge-Kutta 4’th Order

RSS Root Sum Square

WMM World Magnetic Model
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Appendix B: Sensitivity Analysis of Individual Error Groups

Figure B.1: Error Group 1 Sensitivity

Figure B.2: Error Group 2 Sensitivity
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Figure B.3: Error Group 3 Sensitivity

Figure B.4: Error Group 4 Sensitivity
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Figure B.5: Error Group 5 Sensitivity

Figure B.6: Error Group 6 Sensitivity
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Figure B.7: Error Group 7 Sensitivity

Figure B.8: Error Group 8 Sensitivity
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Figure B.9: Error Group 9 Sensitivity

Figure B.10: Error Group 10 Sensitivity
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Figure B.11: Error Group 11 Sensitivity

Figure B.12: Error Group 12 Sensitivity
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Figure B.13: Error Group 13 Sensitivity

Figure B.14: Error Group 14 Sensitivity

168



www.manaraa.com

Figure B.15: Error Group 15 Sensitivity

Figure B.16: Error Group 16 Sensitivity
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Figure B.17: Error Group 17 Sensitivity

Figure B.18: Error Group 18 Sensitivity
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Figure B.19: Error Group 19 Sensitivity
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Appendix C: Attitude Measurement Error Analysis

In Chapter 5 attitude measurements were computed using the TRIAD algorithm with

the two vector pairs being the magnetic field b and the rate of change of the magnetic

field with respect to time due to the velocity of the satellite ḃ. Each vector pair represents

the data in the NED frame and the IMU case frame. To obtain bned, GPS measurements

are used as an input to the WMM, along with the date and time. To compute ḃned, we

make a finite difference approximation between two sequential measurements of bned.

The IMU can measure btr while ḃtr is also estimated through a finite difference approxi-

mation. Now we will discuss how this method of computing attitude affects the overall

uncertainty of our derived attitude measurements and why pre-processing is required.

The uncertainty in bned comes from two sources of error: the WMM uncertainty and

the GPS position uncertainty. Since the WMM uses GPS position as an input and returns

the magnetic field at that point, any uncertainty in position will result in an uncertainty in

the magnetic field (assuming the WMM is perfect). However, the WMM also comes with

uncertainty that is well documented by the National Oceanic and Atmospheric Adminis-

tration (NOAA) [11]. The uncertainty in btr comes from the measurement noise and is the

largest contribution of error to our derived attitude measurements. Since ḃtr is computed

using a finite difference approximation, any significant change due to noise will be seen

as an actual change in the magnetic field. Due to this issue, we employ moving average

filters for pre-processing btr and ḃc. To determine an appropriate batch size n, we conduct

an orbital survey of the magnetic field and rate of change of the magnetic field due to the

orbital velocity.
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Figure C.1: Orbital Survey of Earth’s Magnetic Field

From figure C.1 we can see that the magnetic field changes slowly over time with

peaks near 75nT/s. This allows us to use a large batch size for the moving average filter

(assuming a non-rotating IMU). The moving average filter is given by

x̄k = x̄k−1 +
xk − xk−n

n
, (C.1)

and applying a batch size of n = 100, we obtain the following results shown in figure C.2

Figure C.2: Pre-Processed Data using Moving Average Filter with n = 100
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While the error in btr has been significantly reduced, ḃtr still requires further error reduc-

tion. It is important to note that the small angle assumption plays a significant role in the

tuning of our moving average filters since the magnitude of the attitude noise cannot be

too large otherwise it will invalidate the small angle assumption made in earlier chapters.

Therefore, we attempt to minimize the error as much as we can. Applying a much larger

batch size of n = 1000 we obtain the following results shown in figure C.3.

Figure C.3: Pre-Processed Data using Moving Average Filter with n = 1000

We see that ḃtr is significantly reduced, however, we have now introduced a bias in btr.

This bias is introduced because the data is changing too fast for the batch size and will di-

rectly influence the derived attitude measurements, therefore, we will use both batch sizes

simultaneously. When btr is used for the first TRIAD pair it will be processed through the

n = 100 filter and when ḃtr is used for the second TRIAD pair btr will be processed

through the n = 1000 filter. This achieves the results seen in figure C.4. With the contri-

bution to attitude error from the GPS, WMM, and IMU, we compute a maximum attitude

uncertainty of ±10◦, shown in figure C.5.
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Figure C.4: Pre-Processed Data using Simultaneous Batch Sizes

Figure C.5: Overall Attitude Measurement Uncertainty
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It should be noted that due to the nature of the moving average filter the optimal re-

sults shown are achieved after the sample count approaches the largest batch size. The

magnetometer is sampled at 80Hz and measurements are taken at 5Hz for attitude de-

termination. Now we consider the scenario when the IMU is rotating due to the initial

tumbling phase after ejection of the smallsat. Since the magnetic field is changing at a

much more rapid rate, we must now modify our moving average filter to account for

these rapid changes, otherwise the data will become biased or delayed as seen in figures

C.6 and C.7

Figure C.6: Pre-Processed Rotating Data using Moving Average

To allow more accurate pre-processing we introduce a first order low-pass filter which

takes the form

x̄k = αxk + (1− α)x̄k−1 . (C.2)
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Figure C.7: Attitude Measurement Uncertainty from Moving Average Filter

Applying Eq. C.2 yields the results shown in figures C.8 and C.9 for a rotating body

with rapidly changing data and α = 0.22.

While both scenarios of spacecraft angular velocity are investigated, the realistic sce-

nario does not involve an angular velocity of zero, therefore, the low-pass filter will be

utilized at all time. It is also seen that spinning of the spacecraft yields a more accurate

attitude measurement than the stabilized scenario. The scalar α is determined through

tuning depending on the angular rate of the satellite. A value of α = 0.22 was chosen

based on our assumed initial angular velocity of the spacecraft. For the filter simulations

the lower accuracy of ±10◦ is used.
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Figure C.8: Pre-Processed Rotating Data using Low-Pass Filter

Figure C.9: Attitude Measurement Uncertainty from Low-Pass Filter
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